
STACK OF S3-COVERS

FABIO TONINI

Abstract. The aim of this paper is to study the geometry of the stack of S3-covers. We
show that it has two irreducible components ZS3 and Z2 meeting in a �degenerate� point {0},
Z2 − {0} ' BGL2, while (ZS3

− {0}), which contains BS3 as open substack, is a smooth
and universally closed algebraic stack. More precisely we show that ZS3

− {0} ' [X/GL2],

where X is an explicit smooth non degenerate projective surface inside P7 intersection of �ve
quadrics.

All these results are based on the description of certain families of S3-covers in terms of
�building data�.

Introduction

Covers, rami�ed or unrami�ed, with or without a group action, appear in many context
of algebraic geometry (as well as other branches of mathematics) and they are often used to
construct new varieties as total space of covers of a given variety. It is therefore useful to have
a �recipe� for building up covers from the geometry of the base variety, in terms of divisors
or vector bundles. The easiest example is the correspondence between double covers and line
bundles together with a section of its second tensor power (provided the characteristic is not 2).
Other classical results are [Mir85], [Par89] about triple covers and [Par91] about abelian covers.
We also recall: [CE96, Cas96] about Gorenstein covers, [Eas11] about S3-covers as in the present
paper, [Tok94, Rei99, CP17] about dihedral covers, [Tok02] about S4 and A4-covers, [HM99]
about quadruple covers, [AP12] about non-normal abelian covers, [Ahl20] about stacky covers,
[BB17] about tamely rami�ed covers.

Besides constructing varieties, covers have been used to de�ne some moduli spaces, especially
moduli of covers of curves or surfaces, for example Hurwitz spaces (see e.g. [Ber13]). In this
context we recall also [Pag16, AV04, BV12, PTT15]. In [Ton13a] I introduced the moduli stack
G-Cov of G-covers for a �nite, �at and �nitely presented group scheme G over some base S.
Although G-Cov and the various moduli of covers of curves/surfaces are both stacks parametriz-
ing covers, we want to stress that they are very di�erent objects: the geometric points in the
�rst case are particular �nite schemes (covers of a point) while in the second case are covers of
curves/surfaces.

The problem of studying the geometry of G-Cov is strictly linked with the problem of �nding
a �recipe� or, using the language of [Par91], a �building data� for constructing G-covers, with the
di�erence that we need to describe covers of any scheme, with no geometric restriction on source
or target (�classically� the base scheme is often assumed to be integral).

The stack G-Cov is algebraic and �nitely presented over S and contains BG, the stack of
G-torsors, as an open substack. In particular it has a special component ZG, called the main
irreducible component, which is the schematic closure of BG ⊆ G-Cov. In [Ton13a] I investigated
the geometry of those stacks in the abelian case, more precisely when G is a diagonalizable group
scheme over S = SpecZ: it turns out that, except some cases in small ranks, this geometry can
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be very �wild� as one may expect from an Hilbert scheme. Nevertheless one can restrict the
study to certain loci of G-Cov and, for instance, describe the smooth locus of ZG.

Moving to the non-abelian case the situation worsen, because there are no simple description of
G-covers and therefore no obvious way to study the geometry of G-Cov. In [Ton17a] I propose an
alternative interpretation of those covers as (non necessarily strong) monoidal functor, leading to
some information about the geometry of G-Cov, for instance its reducibility for linearly reductive
non-abelian groups G.

For simplicity let k be an algebraically closed �eld and assume that G is linearly reductive over
k. A G-cover f : X → Y is completely determined by a collection of vector bundles (determining
the module f∗OX), one for each irreducible representation of G and with equal rank, and a
collection of maps between tensor products of those bundles (determining the ring structure
of f∗OX). This data is very simple to describe, but it has to satisfy certain compatibility
conditions (corresponding to the commutativity and associativity of f∗OX), which are expressed
as commutative diagrams of maps between vector bundles. The complexity of the non-abelian
case lies in the complexity and numerousness of those diagrams.

In this paper we consider the simplest non-abelian group G = S3 for char k 6= 2, 3. In this
case the complexity we discussed can be handled directly by listing all conditions and making
sense of them. This lead to a �concrete� set of data describing S3-covers: a line bundle L, a rank
2 vector bundle F and maps α : L ⊗ F → F , β : Sym2 F → F and 〈−,−〉 : detF → L making 5
diagrams commutes (see 2.9). From this description one deduce that S3-Cov ' [U/(Gm ×GL2)]
for an explicit closed subscheme U of A11

k (see 3.1). We summarize the results obtained about
the geometry of S3-Cov in the following:

Theorem. (3.5, 3.15, 4.20 and 4.21) The stack S3-Cov has two irreducible components ZS3

and Z2 and they meet in a point 0 ∈ S3-Cov (which corresponds to the �degenerate� S3-cover).
Moreover the stack S3-Cov − {0} (resp. ZS3

− {0}) is the smooth locus of S3-Cov (resp. ZS3
),

while Z2 ' [A1/Gm]× BGL2. Finally ZS3
− {0} is universally closed, more precisely

ZS3 − {0} ' [X/GL2]

for an explicit non degenerate smooth projective surface X ⊆ P7
k complete intersection of �ve

quadrics.

The above result is obtained by studying the equations of U ⊆ A11, describing certain loci of
S3-Cov and mixing these points of view. The number of equations necessary to de�ne U ⊆ A11

is proof of the complexity of the data associated with S3-covers and it suggests that the study
of G-covers for general groups G needs an alternative approach (see 2.15).

We describe several open substacks of S3-Cov (and of ZS3
), namely the locus Uω where 〈−,−〉

is an isomorphism, which turns out to be equivalent to the stack of triple covers (see 4.3), the
locus Uα where α is nowhere a multiple of the identity (see 4.9) and the locus Uβ where β is
nowhere zero (see 4.13). We show that ZS3 − {0} = Uω ∪ Uα ∪ Uβ and it is the smooth locus of
ZS3

(see 4.20). For each of those open substacks and also for ZS3
itself we determine simpler

sets of �data� for describing its S3-covers (i.e. its objects).
As mentioned before, in [Eas11] the author develops a similar theory of S3-covers, describing,

locally and globally, the algebra de�ning S3-covers. The data provided coincides with the one
we associate with covers in ZS3 . The present paper recovers the results of [Eas11] and expands
them in several directions, by studying the geometry of S3-Cov and by describing several families
of S3-covers.

For simplicity, in this introduction, we assumed to work over an algebraically closed �eld, but
all results actually hold in general over Z[1/6]. Moreover, instead of looking directly at the group
S3, we work with G = µ3oZ/2Z over the ring Z[1/2]. This is because the group G has a simpler
representation theory, which simpli�es the description of G-covers. Over Z[1/6] the groups G
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and S3 are isomorphic only étale locally, nevertheless, via the theory of bitorsors discussed in
the Appendix, we show that there is an equivalence G-Cov ' S3-Cov inducing ZG ' ZS3

and
BG ' BS3 (see 1.5).

This paper follows ideas from the last chapter of my Ph.D. thesis [Ton13b], but it introduces
some improvements, as the study of the projective surface covering ZS3

− {0}. In [Ton13b] it is
also present a characterization of S3-covers between regular schemes and some applications to
surfaces. We plan to discuss and strengthen these results in a subsequent paper, applying also
criteria from [Ton17a] and [Ton17b].

This paper is divided as follows. In the �rst section we apply the theory of bitorsors to the
theory of G-covers. The second section de�nes the global �building data� for S3-covers, while
the third one studies the geometry of S3-Cov. The fourth and last section focuses instead on the
geometry of ZS3 . The are two appendices, the �rst one about the theory of bitorsors, the second
one about some general results on vector bundles.
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Notation

We denote by the letter T a scheme (over the given base if this is speci�ed). It will be used
as base for various algebro-geometric objects.

By a locally free sheaf we mean a locally free sheaf of �nite rank.
A cover of T is a �nite, �at and �nitely presented morphism f : X → T . This is the same as

an a�ne map f : X → T such that f∗OX is a locally free sheaf.
If G is a group scheme over a base S we denote by LocG T (resp. QCohG T ) the category of

locally free sheaves (resp. quasi-coherent sheaves) over T together with an action of G. When
π : G→ S is a�ne, such an action is equivalent to a coaction of the sheaf of Hopf algebras π∗OG.

If F is a locally free sheaf over T with a given basis v1, . . . , vn ∈ F we denote by v∗1 , . . . , v
∗
n ∈ F∨

its dual basis.

1. Bitorsors and G-covers

In this section S is a base scheme and G → S is a �nite, �at and �nitely presented group
scheme. We recall various de�nitions and properties about G-covers.

De�nition 1.1. [Ton13a, Def. 2.1][Ton17a, Def 1.2] A G-cover over a scheme T is a cover
f : X → T together with an action of G on X over T such that f∗OX is fppf locally isomorphic
to the regular representation OT [G] as quasi-coherent sheaves with an action of G (but not
necessarily preserving the ring structure).

We denote by G-Cov the stack of G-covers over S.

Remark 1.2. [Ton13a, Prop 2.2, Thm 2.10] The stack G-Cov is algebraic and �nitely presented
over S and contains BG as an open substack.

De�nition 1.3. [Ton17a, Def 3.5] The stack ZG is the schematic closure of the open immersion
BG→ G-Cov and it is called the main irreducible component of G-Cov.

We apply now the theory of bitorsors (see Appendix A) to the theory of Galois covers.
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Theorem 1.4. Let G and H be �at, �nite and �nitely presented group schemes over a base
scheme S. If P is an fpqc (G,H)-bitorsor over S then the functor ΛP of A.8 �ts in a commutative
diagram

BG ZG G-Cov ShGSch/S X

BH ZH H-Cov ShHSch/S
X×P
G

ΛP

where the vertical arrows are equivalences. Moreover if Y is an S-scheme and p ∈ P (Y ) the
induced composition GY → PY → HY is an isomorphism of groups and X → ΛP (X) is a

natural isomorphism, equivariant with respect to GY → HY , for X ∈ ShGSch/Y .

Proof. The functor ΛP : ShGSch/S → ShHSch/S is an equivalence thanks to A.8. Taking into account

A.5, it is enough to show that ΛP (X) is an H-cover if and only if X is a G-cover. Indeed
any equivalence G-Cov → H-Cov restricting to an equivalence BG → BH has to induce an
equivalence ZG → ZH of their schematic closures. Since being a G-cover or H-cover is a fppf
local property of G-sheaves and fpqc G-torsors are fppf locally trivial, we can assume that P has
a global section. The result then follows from A.5. �

Theorem 1.5. Let G = µn o (Z/nZ)∗ and H = Z/nZ o (Z/nZ)∗ for n ≥ 3. The scheme

P = µn × µ∗n = Spec(AP )→ SpecZ[1/n] where AP =
Z[1/n][x, y]

(xn − 1,Φn(y))

µ∗n ⊆ µn is the open and closed subscheme of primitive n-th roots and Φn is the cyclotomic
polynomial of degree n, is a (G,H)-bitorsor with biaction

G× P ×H → P, (ζ, l) · (x, y) · (i,m) = (ζxlyli, ylm)

In particular the functor ΛP of A.8 induces equivalences as in 1.4 for S = SpecZ[1/n]. Moreover
there is a canonical isomorphism

X/(Z/nZ)∗ ' Λ(X)/(Z/nZ)∗ for X ∈ ShGZ[1/n]

For X = SpecA ∈ G-Cov the H-cover ΛP (X) is the spectrum of the sub-algebra

B =

(
A [x, y]

(xn − 1,Φn(y))

)G
⊆ A [x, y]

(xn − 1,Φn(y))
= A ⊗AP

The (left) H-action on A ⊗ AP is trivial on A and given by (i,m)x = xyi, (i,m)y = ym on
AP . The (left) G-action on A ⊗ AP is the given one on A , while on AP is generated by the

µn-action for which deg x = −1, deg y = 0, while l ∈ (Z/nZ)∗ acts as x 7→ xl
′
, y 7→ yl

′
where

l′ = l−1 ∈ (Z/nZ)∗.
If Y = µ∗n = Spec(Z[1/n][w]/(Φn(w)) the section (1, w) ∈ P (Y ) induces the group isomor-

phism φ : HY → GY , (i,m) 7→ (wi,m) and, for A ∈ GY -Cov, the map

B ⊆ A ⊗AP → A , x 7→ 1, y 7→ w

is an isomorphism, equivariant with respect to φ : HY → GY .

Proof. We apply A.11. Taking into account that Aut(µn) = Aut(Z/nZ) = (Z/nZ)∗ and µn,Z/nZ
are étale locally isomorphic over Z[1/n], the scheme P = µn× Iso(Z/nZ, µn) is a (G,H)-bitorsor.
Part of the statement follows directly from 1.4. The remaining part consists in giving a more
precise description of P . We have that

Iso(Z/nZ, µn)→ Hom(Z/nZ, µn) = µn
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is the locus of ω ∈ µn such that the induced map Z/nZ → µn is an isomorphism. Just looking
at the order of ω, we see that ω ∈ µn − µd for any d | n with d < n. As µd ⊆ µn is an étale
subgroup, it is an open and closed subscheme. Therefore ω ∈ µ∗n = µn−∪d|n,d<nµd, which is an
open and closed subscheme. Morever we also have µ∗n = Spec(Z[1/n][y]/(Φn(y)) by de�nition of
Φn. The condition ω ∈ µ∗n means that ω is a primitive n-th root in all the residue �elds of its
base. This easily implies the equality Iso(Z/nZ, µn) = µ∗n. The description of P in the statement
follows, while the biaction of G and H can be computed directly from the de�nition in A.11.

We are left with the second part of the statement, so let X = SpecA be a G-cover. By
de�nition ΛP (X) = (X × P )/G, where G acts on the right: (x, p)g = (xg, g−1p). In particular
ΛP (X) is the spectrum of (A ⊗AP )G ⊆ A ⊗AP . Here the right G-action on P , − ? g = g−1−
induces a left G-action on (the functor associated with) AP : ζ ∈ µn acts as x 7→ ζ−1x, y 7→ y,

while (1, l), since its inverse in G is (1, l′),acts as x 7→ xl
′
, y 7→ yl

′
. In particular, as µn-comodule,

Ap satis�es deg x = −1 and deg y = 0 and the total G action on A ⊗AP is the diagonal one, as
claimed in the statement. The H-action on ΛP (X) = (X × P )/G is non trivial only on P , from
which we deduce the H-action on A ⊗AP and its subalgebra.

The last part follows directly from the last part of Theorem 1.4. �

2. Data for (µ3 o Z/2Z)-covers or S3-covers

In this section we work over the ring R of integers with 2 inverted, that is R = Z[1/2] and
with the symbol G we will always denote the group scheme G = µ3oZ/2Z de�ned over R, where
the action of Z/2Z on µ3 is given by the inversion, that is Z/2Z ' Aut(µ3). Note that, in this
case, µ2 ' Z/2Z. We denote by σ ∈ Z/2Z(R) the non trivial generator of Z/2Z. We will also
think of σ as an element of G(R).

2.1. The group (µ3 o Z/2Z) and its representation theory. The group G is a linearly
reductive group over R (see [AOV08, Prop 2.6, Thm 2.16]).

Set V0 = R, V1, V2 for the representations of µ3 corresponding to its characters in Z/3Z.
Moreover consider the set IG of G-representations

R, A = Vχ, V = indGµ3
V1

where χ : G −→ Gm is induced by the non trivial character of Z/2Z. Since 2 is invertible in R,
the representations in IG restricts over Q to the irreducible representations of G × Q ' S3. In
other words we have proved that:

Proposition 2.1. The pair (G, IG) is a good linearly reductive group over R in the sense of
[Ton17a, Def 1.11].

We setup the following notation and we will use it throughout the paper. We consider the
following basis 1 ∈ R, 1A ∈ A and v1, v2 ∈ V = V1 ⊕ V2 such that vi ∈ Vi. Moreover since σ
exchanges V1 and V2, we also assume that σ(v1) = v2, σ(v2) = v1. Now we describe the tensor
products of the representations in IG. We have

A⊗A ' R, 1A ⊗ 1A −→ 1 and A⊗ V ' V, 1A ⊗ v1 −→ −v1, 1A ⊗ v2 −→ v2

and, if we set vij = vi ⊗ vj ∈ V ⊗ V ,
R⊕A⊕ V ' V ⊗ V, 1 −→ v12 + v21, 1A −→ v12 − v21, v1 −→ v22, v2 −→ v11

Finally note that the G-equivariant projection V ⊗ V −→ R, vij −→ 1 − δij , where δij is the
Kronecker symbol, yields an isomorphism

V ' V ∨, v1 −→ v∗2 , v2 −→ v∗1

The above discussion allows us to conclude the following:
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2.2. Global description of (µ3 o Z/2Z)-covers. In this section we want to describe the data
needed to de�ne a G-cover over any R-scheme. We proceed in the following way. First we
introduce such data, then we will state the precise relationship with G-covers and only after we
will prove all the claims. We remark here that the global description obtained, although with a
di�erent notation, has already been introduced in [Eas11].

We de�ne the stack Y overR whose objects over anR-scheme T are sequences χ = (L,F , α, β, 〈−,−〉)
where: L is an invertible sheaf, F is a rank 2 locally free sheaf and α, β, 〈−,−〉 are maps

L ⊗ F α−−→ F , Sym2 F β−−→ F , detF 〈−,−〉−−−−→ L

With an object χ ∈ Y as above we associate the map (−,−)χ : F ⊗ F −→ OT given by

(2.1) (−,−)χ : F ⊗ F ' F∨ ⊗ detF ⊗ F id⊗〈−,−〉⊗id−−−−−−−−−→ F∨ ⊗ L⊗ F id⊗α−−−→ F∨ ⊗F −→ OT
where we are using the canonical isomorphism F ' F∨ ⊗ detF . Notice that, although we are
using the symbol (−,−) of a symmetric product, (−,−)χ is not necessarily symmetric. Moreover
we also associate with χ the maps γχ, γ

′
χ : F ⊗ F −→ OT ⊕ L given by

γχ = (−,−)χ + 〈−,−〉, γ′χ = (−,−)χ − 〈−,−〉

Finally we de�ne (see B.2)

(2.2) mχ = (1/2) tr(L2 ⊗F idL⊗α−−−−→ L⊗F α−−→ F) : L2 → OT
and

Aχ = OT ⊕ L⊕ F1 ⊕F2 with F1 = F2 = F
For convenience we also set Lχ = L, Fχ = F , αχ = α, βχ = β and 〈−,−〉χ = 〈−,−〉: given
χ ∈ Y we don't need to specify the whole sequence to refer to one of its elements, for instance
we could simply write βχ = 0 and so on. On the other hand, when χ is given and there is
no possibility of confusion, we will omit the −χ and simply write (−,−), γ, γ′,m,A or χ =
(L,F ,m, α, β, (−,−), 〈−,−〉) ∈ Y.

De�nition 2.2. We denote by LRingsGR the stack of locally free shaves A of �nite rank with a
coaction of G and an equivariant multiplication map A ⊗A → A (not necessarilly commutative
or associative) with an invariant unit 1 ∈ A G.

Proposition 2.3. Given χ ∈ Y as above, the sheaf Aχ has a unique G-comodule structure
such that F0 = OT ⊕ L,F1,F2 de�ne the µ3-action and σ acts as −idL on L and induces
idF : F1 −→ F2.

This proposition will be proved later. We makes Aχ into an object of LRingsGR de�ning the
following multiplication map Aχ ⊗Aχ → Aχ:

L2 m−−→ OT , L ⊗ F1
α−−→ F1, L ⊗ F2

−α−−→ F2, F1 ⊗ L
α̂−−→ F1, F2 ⊗ L

−α̂−−→ F2(2.3)

F1 ⊗F1
β−−→ F2, F2 ⊗F2

β−−→ F1, F1 ⊗F2
η1+η2−−−−→ OT ⊕ L, F2 ⊗F1

η1−η2−−−−→ OT ⊕ L

where α̂ is obtained by α just swapping the factors in the source and, for future reference, we set
η1 = (−,−) and η2 = 〈−,−〉. We are implicitly assuming that the maps OT ⊗Aχ,Aχ ⊗OT −→
Aχ are just the usual isomorphisms, or, in other words, that 1 ∈ OT is the unity for Aχ.

We want now to give a list of equations involving the maps α, β, 〈−,−〉, which we will show
are the relationships needed for the associativity of Aχ. Such equations will be 'local' relations
and therefore we introduce the following notation:
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Notation 2.4. When we �x a generator t of L, the maps m,α, β, 〈−,−〉 will be thought of as:
m ∈ OT , given by m(t ⊗ t); α : F −→ F , given by �α(u) = α(t ⊗ u)�; 〈−,−〉 : detF −→ OS ,
given by �〈u, v〉 = 〈u, v〉t�. When we will say that some particular relation among the maps
m,α, β, 〈−,−〉 locally holds, this will always mean that such relation holds as soon as basis t and
y, z of, respectively, L and F are given.

For instance, the following relation holds locally (use B.1):

(2.4) (u, v) = 〈α(v), u〉 for u, v ∈ F

Consider the equations:

α2 = midF(2.5)

〈α(u), v〉 = 〈α(v), u〉 for u, v ∈ F(2.6)

α(β(u⊗ v)) = −β(u⊗ α(v)) for u, v ∈ F(2.7)

β(β(u⊗ v)⊗ w) = 〈α(w), v〉u+ 〈v, w〉α(u) for u, v, w ∈ F(2.8)

〈u, β(v ⊗ w)〉 = 〈w, β(u⊗ v)〉 for u, v, w ∈ F(2.9)

Theorem 2.5. The map of stacks

Y LRingsGR

χ = (L,F , α, β, 〈−,−〉) Aχ

is well de�ned, fully faithful and induces an equivalence between the substack of Y of objects that
locally satisfy the relations (2.5), (2.6), (2.7), (2.8), (2.9) and G-Cov (where a cover is thought
of as its corresponding sheaf of algebras).

Notation 2.6. Assuming Theorem 2.5, we will think of G-Cov as substack of Y, using for instance
expressions like χ = (L,F , α, β, 〈−,−〉) ∈ G-Cov.

The aim of this section is to prove Theorem 2.5. We will often use results and notations from
[Ton14] and [Ton17a].

Denote by X the stack whose �bers over a scheme T is the groupoid of pseudo-monoidal (see

[Ton14, Def 2.21]) and R-linear functors Γ: LocGR −→ LocT such that rkΓU = rkU for all

U ∈ LocGR, ΓR = OT and 1 ∈ ΓR is a unity. We are going to embed Y into X .
We use results and notations from 2.1. By [Ton17a, Lemma 1.9] and [Ton17a, Rmk 1.17] there

are isomorphisms⊕
W∈IG

HomG(W,U)⊗W → U and
⊕
W∈IG

HomG(W,U)⊗ ΓW → ΓU

natural for U ∈ LocGR and for a R-linear functor Γ: LocGR −→ LocT . It follows that Γ is
completely determined by the collection of locally free sheaves (ΓW )W∈IG . Moreover a pseudo-
monoidal structure on Γ corresponds to a sequence of maps

ΓW ⊗ ΓW ′ → ΓW⊗W ′
'−−→

⊕
Z∈IG

HomG(Z,W ⊗W ′)⊗ ΓZ for W,W ′ ∈ IG

Since in 2.1 we �xed basis for the modules HomG(Z,W ⊗W ′) as above, it follows that an object
Γ ∈ X (T ) can be represented by a sequence (L,F ,m, α, α̂, η1, η2, β) where

L(= ΓA), F(= ΓV )
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are an invertible sheaf and a rank 2 sheaf on T respectively and

L ⊗ L m−−→ OT , L ⊗ F
α−−→ F , F ⊗ L α̂−−→ F , F ⊗ F η1⊕η2⊕β−−−−−−→ OT ⊕ L⊕ F

are maps. In particular Y can be embedded in X by sending χ = (L,F , α, β, 〈−,−〉) ∈ Y to the
sequence (L,F ,mχ, α, α̂, (−,−)χ, 〈−,−〉, β), where α̂ is obtained from α exchanging the factors
in the source.

By [Ton17a, Thm A], [Ton17a, Rmk 1.17] and [Ton14, Thm 8.6] there is a fully faithful functor

B∗ : X → LRingsGR, BΓ =
⊕
W∈IG

W∨ ⊗ ΓW

which restricts to an equivalence between the substack of X of monoidal functors and G-Cov.
In particular a G-cover is (the spectrum of) a BΓ (for some Γ ∈ X ) which is commutative and
associative. Here the multiplication of BΓ is induced by the pseudo-monoidal structure on Γ.

Let us assume that Γ is the functor associated with

χ = (L,F ,m, α, α̂, η1, η2, β) ∈ X (T )

In this case we simply write Bχ = BΓ. The choice of basis for the modules in IG in 2.1 de�nes
an isomorphism

A = OT ⊕ L⊕ (F1 ⊕F2)→ (R∨ ⊗OT )⊕ (A∨ ⊗ L)⊕ (V ∨ ⊗F) = Bχ

1⊕ x⊕ f1 ⊕ f2 7→ (1∗ ⊗ 1)⊕ (1∗A ⊗ x)⊕ [(v∗2 ⊗ f1)⊕ (v∗1 ⊗ f2)]

Lemma 2.7. The G-comodule structure and the multiplication induced on A by Bχ are the
ones described in 2.3 and (2.3) respectively. In particular (B∗)|Y is the map A∗ of Theorem 2.5,
which is well de�ned and fully faithful.

Proof. The claim about the G-comodule structure is clear, so we just have to translate the
multiplication. This is possible using properties 1) to 4) of [Ton17a, Rmk 1.17]. We are going
to discuss in details only one case, while for the other ones we will just present the relevant
computations.

The sheaf OT ⊕L is a Z/2Z-cover and we claim that the induced multiplication L⊗L → OT
is just m. By [Ton17a, Rmk 1.17], in particular point 4), there is a commutative diagram

A∨ ⊗ ΓA ⊗A∨ ⊗ ΓA Bχ ⊗Bχ Bχ

(A⊗A)∨ ⊗ ΓA ⊗ ΓA (A⊗A)∨ ⊗ ΓA⊗A R∨ ⊗ ΓR
(ξ∨)−1⊗Γξ

where ξ : A ⊗ A → R is any G-equivariant isomorphism. On the other hand the composition

L⊗L = ΓA⊗ΓA → ΓA⊗A
Γξ−−→ ΓR = OT ism if and only if ξ is the isomorphism chosen in section

2.1, i.e. such that ξ(1A⊗ 1A) = 1, because this is the way we de�ned the correspondence χ↔ Γ.
Since, in this case, (ξ∨)−1((1A ⊗ 1A)∗) = 1∗, by diagram chasing we see that the multiplication
of Bχ maps

(1∗A ⊗ x)⊗ (1∗A ⊗ y) 7−→ 1∗ ⊗m(x⊗ y) for x, y ∈ L = ΓA

This shows that the multiplication A ⊗A → A induced by Bχ restricts to m : L⊗L → OT as
claimed.

Since (A⊗ V )∨ → V ∨ maps (1A ⊗ v1)∗ 7→ −v∗1 , (1A ⊗ v2)∗ 7→ v∗2 the induced map L⊗ (F1 ⊕
F2)→ F1 ⊕ F2 splits into α and −α. Similarly, the maps (F1 ⊕ F2)⊗ L → F1 ⊕ F2 splits as α̂
and −α̂. Finally one has

(V ⊗ V )∨ → R∨ ⊕A∨ ⊕ V ∨, v∗11 7→ v∗2 , v
∗
22 7→ v∗1 , v

∗
12 7→ 1∗ + 1∗A, v

∗
21 7→ 1∗ − 1∗A
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which implies that the induced multiplication on A is given by

F1 ⊗F1
β−−→ F2, F2 ⊗F2

β−−→ F1, F1 ⊗F2
η1+η2−−−−→ OT ⊕ L, F2 ⊗F1

η1−η2−−−−→ OT ⊕ L

�

In order to prove Theorem 2.5 we have to show that A is (the algebra of) a G-cover if and
only if χ ∈ Y and it satis�es the properties listed in Theorem 2.5. Thus we have to translate
commutativity and associativity conditions of A .

2.2.1. Commutativity conditions. We claim that A is commutative if and only if: β : F ⊗
F → F is symmetric, α̂ : F ⊗ L −→ F is obtained from α : L ⊗ F → F swapping factors in the
source, η1 is symmetric, η2 is antisymmetric. Indeed by [Ton14, Prop 2.25 and Prop 2.26] A is
commutative if and only if Γ is symmetric. Moreover this is equivalent to: for U,U ′ ∈ IG the

maps ΓU ⊗ ΓU ′ → ΓU⊗U ′ and ΓU ′ ⊗ ΓU → ΓU ′⊗U
Γswap−−−−→ ΓU⊗U ′ di�er by a swap of factors in

the source. For U = U ′ = A we see that m : L⊗L → OT is automatically symmetric because L
has rank 1. For U = A, U ′ = V (or the converse) we obtain the relation between α and α̂. For
U = U ′ = V , notice that the swap map on V ⊗ V ' R⊕A⊕ V is the identity on R and V and
minus the identity on A. This translates in the symmetry of η1 and β and the antisymmetry of
η2.

2.2.2. Associativity conditions. Let us assume that A is commutative. Moreover we use the
notation η1 = (−,−), η2 = 〈−,−〉,γ = η1 + η2 and γ′ = η1 − η2. We now express some diagrams
that have to commute if A is associative. We use the notation introduced in 2.4.

•

L ⊗ L ⊗ F1 OS ⊗F1

L ⊗ F1 F1

m⊗id

id⊗α id

α

(2.10)

Locally we obtain the condition (2.5).
•

F1 ⊗F2 ⊗ L (OS ⊕ L)⊗ L

L⊗ L⊕ L

'

F1 ⊗F2 OS ⊕ L

γ⊗id

id⊗−α̂

γ

m⊕id

(2.11)

The commutativity of this diagram is locally equivalent to (u, α(v)) = −m〈u, v〉, (u, v) =
−〈u, α(v)〉 and, assuming (2.5), to (2.4).

•

F1 ⊗F1 ⊗ L F2 ⊗ L

F1 ⊗F1 F2

β⊗id

id⊗α̂ −α̂
β

(2.12)

The commutativity of this diagram is locally equivalent to (2.7).
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•

F2 ⊗F2 ⊗F1 F1 ⊗F1

'F2 ⊗ (OS ⊕ L)

F2 ⊕F2 ⊗ L F2

β⊗id

id⊕(−α̂)

β

id⊗γ′
(2.13)

The commutativity of this diagram, assuming (2.4), is locally equivalent to (2.8).
•

F1 ⊗F1 ⊗F1 F1 ⊗F2

F2 ⊗F1 OS ⊕ L

id⊗β

β⊗id γ

γ′

(2.14)

Since γ′(u ⊗ v) = γ(v ⊗ u), the commutativity of this diagram is locally equivalent to
(2.9) and the analogous one for (−,−), which however follows from (2.4), (2.5), (2.7) and
(2.9). Indeed

(u, β(v ⊗ w)) = 〈α(β(v ⊗ w)), u〉 = −〈β(v ⊗ α(w)), u〉 = 〈u, β(v ⊗ α(w))〉
= 〈α(w), β(u⊗ v)〉 = (β(u⊗ v), w) = (w, β(u⊗ v))

Remark 2.8. Let A be a commutative (but not necessary associative) ring and x, y, z ∈ A. If

(xy)z = x(yz) and (yx)z = y(xz)

then all the permutations of x, y, z satisfy associativity. Indeed

y(zx) = (yx)z = x(yz) = (yz)x, z(xy) = (yx)z = y(xz) = (zx)y

(zy)x = x(yz) = (xy)z = z(yx), (xz)y = y(zx) = (yz)x = x(zy)

Proof. (of Theorem 2.5) We have to show that A is commutative and associative if and only
if χ ∈ Y and it satis�es the properties listed in Theorem 2.5. The �only if� part is an easy
consequence of the above discussion. We just highlight some points. Condition (2.5) implies
that m is obtained from α as in (2.2), while condition (2.4) implies that (−,−) is obtained from
〈−,−〉 as in (2.1): in particular χ ∈ Y. Finally the symmetry of (−,−) implies that equation
(2.6) holds.

We now focus on the converse. So assume χ ∈ Y and that it satis�es the properties listed in
Theorem 2.5. By (2.4) and (2.6) we obtain the symmetry of (−,−) and therefore the commuta-
tivity of A .

We need to show that A is associative. Given A,B,C ∈ {OS ,L,F1,F2} we will say that
(A,B,C) holds if a(bc) = (ab)c for all a ∈ A, b ∈ B, c ∈ C. Since σ ∈ Z/2Z induces a ring
automorphism of A , if (A,B,C) holds then (σ(A), σ(B), σ(C)) holds. Moreover, by 2.8, if also
(B,A,C) holds then all permutations of (A,B,C) and (σ(A), σ(B), σ(C)) hold. Recall that σ
�x OS and L and exchanges F1 and F2.

Clearly (L,L,L) holds. Condition (2.5) insures that (L,L,F1), (L,L,F2) and all their permu-
tations hold. Conditions (2.4) and (2.5) say that all the permutations of (F1,F2,L) hold, while
condition (2.7) tells us that all the permutations of (F1,F1,L) and (F2,F2,L) hold. The relation
(2.8) implies that (F2,F2,F1), (F1,F1,F2) and all their permutations hold. Finally (2.9) says
that (F1,F1,F1) and (F2,F2,F2) hold. It is now easy to check that we have obtained all the
possible triples. �
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Theorem 2.9. The functor Y → LRingsGR is an equivalence between the substack of Y of objects
making the following diagrams (2.10), (2.12), (2.13), (2.14) and

F ⊗ L⊗ F F ⊗ F

F ⊗ F detF

id⊗α

−α⊗id 〈−,−〉
〈−,−〉

commutative and G-Cov.

Proof. Let χ ∈ Y. First of all notice that the commutativity of the diagram in the statement is
locally equivalent to (2.6) and, using (2.4), to the symmetry of (−,−)χ. By de�nition of Y and
2.2.1, this is also equivalent to the commutativity of Aχ. Thus the claim follows from 2.5 and
2.2.2. �

2.3. Local analysis. Let χ = (L,F , α, β, 〈−,−〉) ∈ Y and assume that t ∈ L is a generator and
that y, z is a basis of F . The aim of this subsection is to translate conditions (2.5), (2.6), (2.7),
(2.8) and (2.9), writing all the maps α, β, 〈−,−〉 with respect to the given basis. In particular
we will use notation from 2.4, so that m ∈ OT , α is a map F −→ F and 〈−,−〉 : detF −→ OT .

Notation 2.10. Write

β(y2) = ay + bz, β(yz) = cy + dz, β(z2) = ey + fz, 〈y, z〉 = ω, α =

(
A B
C D

)
In particular:

(y, y) = −Cω, (y, z) = −Dω, (z, y) = Aω, (z, z) = Bω, m = (A2 +D2)/2 +BC

Lemma 2.11. The object χ = (L,F , α, β, 〈−,−〉) ∈ Y belongs to G-Cov if and only if the
following relations hold.

(2.15)

(2.5) ⇐⇒ (A−D)(A+D) = B(A+D) = C(A+D) = 0
(2.6) ⇐⇒ ω(A+D) = 0

(2.7) ⇐⇒


(2aA+ bB + cC) = (2cA+ dB + eC) = 0

C(a+ d) + b(A+D) = C(c+ f) + d(A+D) = 0
B(a+ d) + c(A+D) = B(c+ f) + e(A+D) = 0
a(A+D)−D(a+ d) = c(A+D)−D(c+ f) = 0

(2.8) ⇐⇒


a2 + bc = −ωC, ac+ be = ω(A−D), c2 + de = Bω

(a− d)(a+ d) = b(a+ d) = c(a+ d) = 0
(c− f)(c+ f) = d(c+ f) = e(c+ f) = 0

a(a+ d) + b(c+ f) = e(a+ d) + c(c+ f) = 0
(2.9) ⇐⇒ ω(a+ d) = ω(c+ f) = 0

Proof. The claims follow from the following relations, which can be computed directly.

〈z, β(y2)〉 = −aω 〈y, β(zy)〉 = 〈y, β(yz)〉 = dω
〈y, β(z2)〉 = fω 〈z, β(yz)〉 = 〈z, β(zy)〉 = −cω

α(β(y2)) + β(yα(y)) = (2aA+ bB + cC)y + (C(a+ d) + b(A+D))z
α(β(zy)) + β(zα(y)) = (2cA+ dB + eC)y + (C(c+ f) + d(A+D))z
α(β(yz)) + β(yα(z)) = (B(a+ d) + c(A+D))y + (2dD + bB + cC)z
α(β(z2)) + β(zα(z)) = (B(c+ f) + e(A+D))y + (2fD + eC + dB)z
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If we set Γ(u, v, w) = 〈α(w), v〉u+ 〈v, w〉α(u) = (v, w)u+ 〈v, w〉α(u) we have

β(β(y2)y) = (a2 + bc)y + b(a+ d)z Γ(y, y, y) = −Cωy
β(β(y2)z) = (ac+ be)y + (ad+ bf)z Γ(y, y, z) = ω(A−D)y + ωCz
β(β(z2)y) = (ea+ fc)y + (eb+ fd)z Γ(z, z, y) = −Bωy + ω(A−D)z
β(β(z2)z) = e(c+ f)y + (ed+ f2)z Γ(z, z, z) = Bωz

β(β(yz)y) = β(β(zy)y) = c(a+ d)y + (cb+ d2)z Γ(y, z, y) = Γ(z, y, y) = −Cωz
β(β(yz)z) = β(β(zy)z) = (c2 + de)y + d(c+ f)z Γ(y, z, z) = Γ(z, y, z) = Bωy

�

Notation 2.12. Given χ = (L,F ,m, α, β, 〈−,−〉) ∈ Y, a basis y, z of F and a generator t ∈ L,
we will denote by

aχ, bχ, cχ, dχ, eχ, fχ, ωχ, Aχ, Bχ, Cχ, Dχ,mχ

the data associated with χ as above. We will always omit the −χ if this will not lead to confusion.

2.4. From (µ3 o Z/2Z)-covers to S3-covers. In this section we compare G-covers and S3-
covers. We denote by R3 the ring of integers with 6 inverted, that is R3 = Z[1/6] = R[1/3].
Theorem 1.5 for n = 3 applies to G and H = Z/3Z o (Z/3Z)∗ over R3 ⊇ Z[1/3]. We �x the
isomorphism H → S3 mapping (1, 1) 7→ (123), (0, 2) 7→ (12).

Proposition 2.13. Over R3 the equivalence G-Cov → S3-Cov of 1.5 maps a G-cover A =
O ⊕ L⊕ (V ∨ ⊗F) (where F1 = v∗2 ⊗F and F2 = v∗1 ⊗F) to the sub algebra

C = O ⊕ Lz ⊕ [(v∗2x+ v∗1x
2)⊗F ]⊕ [(v∗2zx− v∗1zx2)⊗F ] ⊆ A [x, z]/(x3 − 1, z2 + 3)

The left S3-action on the above algebras is trivial on A and satis�es

(123)x = x(z − 1)/2, (123)z = z, (12)x = x, (12)z = −z
Over Y = Spec(R3[w]/(w2 + 3)) the map C → A ,x 7→ 1, z 7→ w is an isomorphism equivariant
with respect to the isomorphism (S3)Y → GY , (123) 7→ (w − 1)/2, (12) 7→ σ.

Proof. We are going to rewrite 1.5 in this simpli�ed situation. We have Φ3(y) = 1 + y+ y2 and,
over R3,

K = R3[y]/(y2 + y + 1) = R3[z]/(z2 + 3) = R3 ⊕R3z where z = 1 + 2y, y = (z − 1)/2

Moreover µ∗3 = SpecK and the natural involution of µ∗3 acts as y 7→ y2 or z 7→ −z. In particular
A ⊗AP = A [x, z]/(x3 − 1, z2 + 3) and its S3-action is

(123)↔ (1, 1) : x 7→ xy = x(z − 1)/2, z 7→ z, (12)↔ (0, 2) : x 7→ x, z 7→ −z
Instead σ acts on A ⊗ AP with the usual action on A , while on x, z, since G 3 σ 7→ (1, 2) ∈
µ3 o (Z/3Z)∗, as x 7→ x2, z 7→ −z. The µ3-action on A ⊗AP is the usual one on A , while on AP
we have deg x = −1 = 2 and deg z = 0. In other words AP = K ⊕Kx2 ⊕Kx is the graduation
induced by µ3. We have

(A ⊗AP )µ3 = [(O ⊕ L)⊗K]⊕ [v∗2 ⊗F ⊗Kx]⊕ [v∗1 ⊗F ⊗Kx2]

In particular (A ⊗AP )G = O⊕Lz⊕W whereW is the σ-invariant of [v∗2⊗F⊗Kx]⊕[v∗1⊗F⊗Kx2].
As σ exchanges the two factors we have that W is the sheaf of elements of the form

v∗2 ⊗ f ⊗ λx+ σ(v∗2 ⊗ f ⊗ λx) = v∗2 ⊗ f ⊗ λx+ v∗1 ⊗ f ⊗ σ(λ)x2 for f ∈ F , λ ∈ K
Since K = R3 ⊕R3z, for λ = 1 and λ = z we obtain

v∗2 ⊗f ⊗x+v∗1 ⊗f ⊗x2 = (v∗2x+v∗1x
2)⊗f and v∗2 ⊗f ⊗zx+v∗1 ⊗f ⊗−zx2 = (v∗2zx−v∗1zx2)⊗f

The last statement follows directly from 1.5. �
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Remark 2.14. It is a classical result that Et3 → BS3, Q 7→ Iso(Z/3Z, Q), where Et3 is the stack
of degree 3 étale covers and Z/3Z is thought of as a scheme, is an equivalence (see [?, Prop 2.7]).
Thus over R3 the S3-torsor P = µ3×µ∗3 of 1.5 is induced by a degree 3 étale cover over R3: this
is µ3 → SpecR3 itself. Indeed a direct check shows that

P = µ3 × Isogroups(Z/3Z, µ3)→ Isosets(Z/3Z, µ3), (g, φ) 7→ mg ◦ φ

where mg denotes the multiplication by an element of g ∈ µ3, is an S3-equivariant map of
S3-torsors, hence an isomorphism.

3. Geometry of (µ3 o Z/2Z)-Cov and S3-Cov

We keep the notation from Section 2. In particular R = Z[1/2], R3 = Z[1/6] and G =
µ3 o Z/2Z. The aim of this section is to describe the geometry of the stacks G-Cov over R. In
particular, over R3, we obtain a description of S3-Cov ' G-Cov thanks to 2.13.

3.1. A smooth atlas for (µ3 o Z/2Z)-Cov. Set

P = R[a, b, c, d, e, f, A,B,C,D, ω]/(relations 2.11)

By 2.11 the scheme SpecP represents the functor (Sch/R)op → (Sets) which with any R-scheme
associates the setoid of G-covers χ = (L,F ,m, α, β, 〈−,−〉) with a given basis for L and F . In
other words SpecP is isomorphic to the �ber product (over R) of (L,F) : G-Cov → (BGm ×
BGL2) and the trivial torsor SpecR → BGm × BGL2. The map SpecP → G-Cov corresponds
to

(P, P 2, α, β, 〈−,−〉) where α =

(
A B
C D

)
, β =

(
a c e
b d f

)
, 〈−,−〉 = ω

Here we are using the canonical basis of P and P 2. In particular

Theorem 3.1. The map SpecP → G-Cov is a (Gm ×GL2)-torsor and

G-Cov ' [SpecP/(Gm ×GL2)]

We now want to discuss the ring P more in details and, in particular, prove the following
result:

Theorem 3.2. The ring P is a �at R-algebra, it has two minimal primes

Q1 = (a+ c, d+ f,A+D) and Q2 = (a, b, c, d, e, f, B,C,A−D,ω)

Spec(P/Q1)→ SpecR is �at and geometrically integral and Spec(P/Q2) ' A1
R.

Moreover Q1 + Q2 = (a, b, c, d, e, f, A,B,C,D, ω), Q1 ∩ Q2 = (a + c, d + f) =
√

0P and
Spec(P )red → SpecR is �at and geometrically reduced.

De�nition 3.3. We denote by {0} the closed substack of χ ∈ G-Cov such that αχ = βχ =
〈−,−〉χ = 0.

Remark 3.4. The inclusion {0} → G-Cov, over the atlas SpecP → G-Cov, corresponds to
the map SpecR → SpecP mapping all variables to 0. In particular it follows that {0} '
BGm × BGL2.

A direct consequence of 3.1 and 3.2 is the following.

Theorem 3.5. The stack G-Cov is a �at and �nitely generated algebraic stack over R, the closed
substacks (see B.4)

ZG = {χ | trβχ = trαχ = 0}, Z2 = {χ | βχ = 〈−,−〉χ = 0, αχ = ((trαχ)/2)⊗ idFχ}
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are the irreducible components of G-Cov with their reduced structure and they are �at and geo-
metrically integral over R. Moreover ZG ∩Z2 = {0}, (G-Cov)red = {χ | trβχ = 0} and it is �at
and geometrically reduced over R. Finally we have a decomposition into open substacks

(3.1) (G-Cov− {0}) = (ZG − {0}) t (Z2 − {0})

We collect some partial results before proving Theorem 3.2.

Lemma 3.6. We have (a+ d)3 = (c+ f)3 = 0 in P . On the other hand a+ d and c+ f are not
zero in any geometric �ber of SpecP → SpecR.

Proof. Indeed, by (2.15), we have a(a+ d) = d(a+ d) and

0 = [a(a+ d) + b(c+ f)](a+ d) = a(a+ d)2 = d(a+ d)2 =⇒ (a+ d)3 = 0

The expression (c+ f)3 = 0 is proved similarly.
For the second claim, if k is an algebraically closed �eld over R, the choice

a = b = c = d = e = f = ω = A = B = C = D = x

de�nes a map P → k[x]/(x2) sending a+ d and c+ f to x. �

Lemma 3.7. The map P → PA+D has kernel Q2 of Theorem 3.2 and factors as

P � R[A] ↪→ R[A]A, a, b, c, d, e, f, ω,B,C 7→ 0, D 7→ A,A 7→ A

Proof. Clearly P/Q2 ' R[A], so it is enough to show that a, b, c, d, e, f, ω,B,C,A −D are zero
in PA+D. We makes use of (2.15). We immediately have B = C = ω = 0 and A = D, which
is therefore invertible in PA+D. From the local equations corresponding to (2.7) we �rst obtain
b = c = d = e = 0, then 2aA = 0 and therefore, as A is invertible, a = 0. Finally the last
equation yields Df = Af = 0 and thus f = 0. �

We now focus on the �rst prime ideal Q1.

Lemma 3.8. Let D be a ring and a, b1, . . . , bm be a regular sequence in D. Then a is a non zero
divisor in D[X1, . . . , Xm]/(aXi − bi | i ≤ m).

Proof. Denote by Sm the last ring in the statement. We proceed by induction on m.
Base case m = 1. So let f ∈ D[X1] such that af = 0 in S1, so that

af(X1) = g(X1)(aX1 − b1) in D[X1] for some g ∈ D[X1]

It follows that b1g(X1) = 0 in (D/(a))[X1] and, by hypothesis, that a | g(X1) in D[X1], say
g = ag̃. As a is a non zero divisor in D[X1] we can conclude that f = g̃(aX1 − b1), that is f = 0
in S1.

Inductive step m =⇒ m + 1. From the base case it is enough to show that a, bm+1 is a
regular sequence in Sm. From the case m we know that a is a non zero divisor in Sm. On the
other hand

Sm/(a) = D[X1, . . . , Xm]/(a, b1, . . . , bm) = (D/(a, b1, . . . , bm))[X1, . . . , Xm]

which shows that bm+1 is a non zero divisor on Sm/(a). �

Remark 3.9. Let D be a ring and b1, . . . , bm ∈ D. Then the kernel of the map

D[X1, . . . , Xm]→ D[t], Xi 7−→ tbi

is the graded ideal generated by the homogeneous polynomials f such that f(b1, . . . , bm) = 0.
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Lemma 3.10. Let D be a ring, b1, . . . , bm ∈ D and denote by J the graded ideal of D[X1, . . . Xm]
generated by the homogeneous polynomials f such that f(b1, . . . , bm) = 0. Consider also the ring

S =
D[X1, . . . , Xm, ω]

(J, ωXi − bi)
Then Sω = D[ω]ω and the map

S → D[ω]ω, Xi 7−→ bi/ω

is well de�ned and injective.

Proof. The ring Sω is the quotient ofD[ω]ω by the ideal generated by f(b/ω) for f ∈ J , where b =
(b1, . . . , bm). Since f(b/ω) = f(b)/ωd = 0 if f ∈ D[X1, . . . , Xm] is an homogeneous polynomial
of degree d and f ∈ J , we can conclude that Sω = D[ω]ω. Consider the map

φ : D[X1, . . . , Xm, ω]/J → D[ω, t], Xi 7−→ tbi

It is injective by 3.9. We have to prove that the kernel K of the map

D[X1, . . . , Xm, ω]/J → D[ω, t]→ D[ω, t]/(ωt− 1) ' D[ω]ω, Xi 7−→ bi/ω

is generated by the ωXi − bi. Thus let f ∈ K, which just means φ(f) ∈ (ωt − 1). Since
φ(ωXi − bi) = 0 we can assume

f =
∑
α∈Nm

fαX
α with f0 ∈ D[ω] and fα ∈ D if |α| > 0

By assumption

φ(f) =
∑
α∈Nm

fαt
|α|bα = g(ω, t)(ωt− 1) =⇒

∑
α | |α|=l

fαb
α = gl−1ω − gl for l ≥ 0

where g =
∑
l∈Z glt

l ∈ D[ω][t], that is with gl = 0 if l < 0 or l � 0. We claim that g = 0 and,
therefore, f = 0. Indeed, otherwise, if q is the degree of g with respect to t, we would have

gqω =
∑

α | |α|=q+1

fαb
α ∈ D =⇒ gq = 0

�

Proposition 3.11. Let S = R[a, b, c, e, A,B,C, ω]/I where I is the ideal

I = (2aA+ bB + cC, 2cA− aB + eC, 2ωA− (ac+ be), ωB − (c2 − ae), ωC + a2 + bc)

Then SpecS → SpecR is �at and geometrically integral.

Proof. Flatness follows from geometric integrality. Indeed this is equivalent to the torsion freeness
of S, which, in case S is a domain, coincides with the injectivity of R → S. This follows from
the existence of the morphism S → R mapping all variables to 0.

We now have to prove that, if we replace R by any domain R, the ring S is a domain. Consider
b1 = (ac+ be)/2, b2 = (c2− ae) and b3 = −a2− bc and D = R[a, b, c, e]. By 3.9 and 3.10 we have
to prove that, if

J = (2aX1 + bX2 + cX3, 2cX1 − aX2 + eX3)

then φ : P = D[X1, X2, X3]/J → D[t], Xi 7→ tbi is well de�ned and injective. It is well de�ned
because

det

 Y1 Y2 Y3

2a b c
2c −a e

 = 2(Y1b1 + Y2b2 + Y3b3)
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Thus we focus on the injectivity. Over De we have

Pe = De[X1, X2, X3]/J = De[X1, X2]/(b1X2 − b2X1)

It follows that φ is an isomorphism over Deb1 . Since eb1 6= 0, the claim holds if we show that P
is a domain. We apply 3.8 twice. We have that

P1 = D[a, b, c,X1, X2][X3]/(cX3 − (−2aX1 − bX2))

is a subdomain of (P1)c = D[a, b, c,X1, X2]c because c, 2aX1 + bX2 is a regular sequence in
D[a, b, c,X1, X2]. Now consider

P = P1[e]/(X3e− (aX2 − 2cX1))

We prove that f = aX2−2cX1 is a non zero divisor in P1/(X3), so that P would be a subdomain
of PX3

= (P1)X3
= D[a, b,X1, X2, X3]X3

. Set g = 2aX1 + bX2. The map

P1/(X3) = (D[a, b,X1, X2]/(g))[c]→ (P1)c/(X3) = (P1)c/(g)

is injective, thus we have to exclude that f is a zero divisor in the bigger ring. Consider the
change of variable

X1 = −f/(2c) = X1 − (a/(2c))X2 =⇒ g = 2aX1 − b3X2, (P1)c = D[a, b, c,X1, X2]c

If f , and so X1, is a zero divisor in (P1)c/(g) we have

X1p = gq in (P1)c =⇒ gq = b3X2q = 0 in (P1)c/(X1) = D[a, b, c,X2]c =⇒ q = q̃X1

and thus p = q̃g, that is p = 0 in (P1)c/(g) . �

Proof of Theorem 3.2. From 3.7 we know that Q2 is a prime ideal, P/Q2 ' R[A], Spec(P/Q2)
is the schematic closure of the open immersion SpecPA+D → SpecP and therefore that Q2 is a
minimal prime. From 3.11, since S/I = P/Q1, we deduce that Q1 is a prime and Spec(P/Q1)→
SpecR is �at and geometrically integral. Since Q1 goes to zero along the map P → Pω, it has
to be the kernel and therefore a minimal prime.

From 3.6 we have (a+d, c+f) ⊆
√

0P ⊆ Q1∩Q2. In order to check the equality, we can work
over P ′ = P/(a + d, c + f). Denote by Q′1 Q

′
2 the images of Q1, Q2 respectively. In particular

Q′1 = (A+D) and Q′1Q
′
2 = 0. If u ∈ Q′1∩Q′2 in P ′, we have u = (A+D)v ∈ Q′2. Since A+D /∈ Q′2

it follows that v ∈ Q′2. Hence u ∈ Q′1Q′2 = 0. In conclusion Q1 ∩Q2 = (a+ d, c+ f) =
√

0P and
Q1, Q2 are the only minimal primes of P . Moreover, since Q1 + Q2 is the kernel of the �zero
map� P → R, there is an exact sequence of R-modules

0→ P/(Q1 ∩Q2)→ P/Q1 × P/Q2 → (P/Q1 +Q2) ' R → 0

It follows that Q1 ∩ Q2 commutes with arbitrary base changes of R and, since SpecP/Q1

and SpecP/Q2 are geometrically integral over R, we can conclude that Spec(P/(Q1 ∩ Q2)) =
(SpecP )red → SpecR is geometrically reduced. From the above sequence, since P/Q1 and P/Q2

are R-�at, we can also conclude that P/(Q1 ∩Q2) is R-�at. This also implies that, if x ∈ P is
a non-zero divisor as R-module, then x ∈ Q1 ∩Q2 =

√
0P , that is x is nilpotent in P . Applying

the �zero map� P → R it follows that x is nilpotent in R and thus x = 0. In conclusion P is
R-torsion free and therefore R-�at. �

Lemma 3.12. The action SpecP ×Gm → SpecP obtained restricting the GL2×Gm-action on
P via j : Gm → GL2×Gm, j(λ) = (λid, λ) is given by (χ, λ) 7→ λ−1χ.

Proof. We think of F = SpecP as the functor (Sch/R)op → (Sets) such that F (T ) is the set
of sequences χ = (OT ,O2

T , α, β, 〈−,−〉) belonging to G-Cov(T ). If χ = (OT ,O2
T , α, β, 〈−,−〉) ∈

F (T ) and (M,λ) ∈ GL2×Gm(T ) then χ · (M,λ) = (OT ,O2
T , α

′, β′, 〈−,−〉′) ∈ F (T ) is the unique
element such that (M,λ) de�nes a morphism χ → χ · (M,λ) in G-Cov(T ). In other words we
must have: Mα = α′(λ ⊗M), Mβ = β′ Sym2M and λ〈−,−〉 = 〈−,−〉′detM . If M = λid a



STACK OF S3-COVERS 17

simple computation shows that α′ = λ−1α, β′ = λ−1β and 〈−,−〉′ = λ−1〈−,−〉, which implies
the claim. �

Theorem 3.13. The GL2-torsor induced by F ⊗ L−1 : (G-Cov − {0}) → BGL2 is of the form
ProjP → (G-Cov− {0}), where P has the natural grading of a polynomial algebra, and it splits
accordingly to (3.1) as ProjP = ProjP1 t SpecR, where P1 is the algebra of 3.11. In particular
we have presentations

(G-Cov− {0}) ' [ProjP/GL2], (ZG − {0}) ' [Proj(P1)/GL2], (Z2 − {0}) ' BGL2

Proof. Consider the Cartesian diagrams

SpecP − {0} SpecR

V BGm SpecR

G-Cov− {0} B(GL2×Gm) B(GL2)
B(φ)(F,L)

B(j)

Here {0} ⊆ SpecP is the closed subscheme de�ned by the graded irrelevant ideal. The map
φ : GL2×Gm → GL2 is φ(M,λ) = λ−1M , which is a surjective group homomorphism whose
kernel is j : Gm → GL2×Gm, j(λ) = (λid, λ). The bottom right diagram is Cartesian thanks to
[HMT20, Cor 1.21]. The horizontal arrow G-Cov−{0} → BGL2 at the bottom is exactly induced
by F⊗L−1. It follows that V ' [SpecP−{0}/Gm] where the action of Gm is the restriction along
j of the action of GL2×Gm on SpecP . By 3.12 we can conclude that [SpecP−{0}/Gm] ' ProjP .
For the last part notice that P/Q1 = P1 and P/Q2 = R[A], so that Proj(P/Q2) = SpecR (see
3.2). As Q1 and Q2 are graded ideals also the last remaining claims holds. �

Corollary 3.14. The stacks (G-Cov−{0})→ SpecR and (ZG−{0})→ SpecR are universally
closed morphisms of stacks.

Proof. Both stacks f : X → SpecR admits a smooth atlas U → X such that U → SpecR is
universally closed thanks to 3.13. It follows easily that f : X → SpecR is universally closed as
well. �

3.2. Exceptional irreducible component of (µ3 o Z/2Z)-Cov. In this section we describe
the irreducible component Z2 = {χ | βχ = 〈−,−〉χ = 0, αχ = ((trαχ)/2)⊗ idFχ} of G-Cov (see
3.5).

Theorem 3.15. Let Z ′2 be the stack over R of triples (L,F , µ) where L is an invertible sheaf,
F is a rank 2 locally free sheaf and µ : L → O is a map. Then Z ′2 ' [A1

R/Gm]× BGL2 and we
have an equivalence

Z ′2 → Z2, (L,F , µ) 7−→ (L,F , µ⊗ idF , 0, 0)

Moreover Z2 − {0} is an open substack of G-Cov and it is equivalent to BGL2.

Proof. The last claim is included in 3.13. Since BGL2 is the stack of rank 2 locally free sheaves
and [A1/Gm] is the stack of invertible sheaves with a section, it follows that Z ′2 ' [A1

R/Gm] ×
BGL2. It is easy to check locally that the functor Z ′2 → Z2 is well de�ned and, using B.5, that
it is an equivalence. �



STACK OF S3-COVERS 18

3.3. Smooth locus of (µ3 o Z/2Z)-Cov.

Theorem 3.16. We have

G-Cov− {0} ' BGL2 t(ZG − {0})
and it is the smooth locus of G-Cov→ SpecR.

We state here the above theorem to be consistent with the section argument. Anyway we will
prove it in Section 4.5, after showing the smoothness of ZG − {0} over R. Here we show that
{0} cannot be smooth:

Lemma 3.17. The closed substack {0} does not meet the smooth locus of any of ZG, G-Cov or
(G-Cov)red (see 3.5).

Proof. By 3.2 any of these stacks X has a smooth atlas f : SpecS → X of the form S =
R[y1, . . . , ym]/(q1, . . . , ql), with qi quadratic polynomials, and such that f−1{0} = V (y1, . . . , ym),
the zero locus of the yi. Moreover l ≥ 1. It follows that the Jacobian ideal in S is contained in
(y1, . . . , ym), which proves the claim. �

4. Geometry of the main irreducible components Z(µ3oZ/2Z) and ZS3

We keep the notation from Section 2. In particular R = Z[1/2], R3 = Z[1/6] and G =
µ3 oZ/2Z. The aim of this section is to describe the geometry of the irreducible component ZG
of G-Cov over R. In particular, over R3, we obtain a description of ZS3

' ZG thanks to 2.13.
We proceed by looking at particular open substacks of ZG and G-Cov.

4.1. Triple covers and the locus where 〈−,−〉 : detF −→ L is an isomorphism. The aim
of this section is to study the following locus.

De�nition 4.1. We denote by Uω the (open) subastack of χ ∈ G-Cov such that 〈−,−〉χ : detFχ −→
Lχ is an isomorphism.

De�nition 4.2. De�ne C3 as the stack whose objects are pairs (F , δ) where F is a locally free
sheaf of rank 2 and δ is a map

δ : Sym3 F −→ detF
Denote by Cov3 the stack of degree 3 covers, or, equivalently, the stack of locally free sheaves of
algebras of rank 3.

Notice that C3 is a smooth stack over R because it is a vector bundle over BGl2, which is the
stack of rank 2 locally free sheaves. We are going to de�ne a functor C3 → Uω and prove that it
is an isomorphism. This also explains the reason of the section name: it is a classical result (see
[Mir85, BV12, Par89]) that, over R3, the stack C3 is isomorphic to the stack Cov3. We will show
that, in this case, the map Cov3 ' C3 −→ Uω is a section of the map G-Cov −→ Cov3, obtained
taking invariants by σ ∈ Z/2Z ⊆ G.

In the appendix B.1 we discussed several constructions obtained from an object (F , δ) ∈ C3.
By B.10 C3 can also be described as the stack of pairs (F , β) where F is a locally free sheaf of
rank 2 and β : Sym2 F −→ F is a map such that trβ = 0. We follow notation from B.11, in
particular the de�nition of δβ , βδ, ηδ, αδ,mδ.

Theorem 4.3. The maps of stacks

(F , δ) (detF ,F , αδ, βδ, iddetF )

C3 Uω
(F , δβ) (L,F , α, β, 〈−,−〉)

Λ
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are well de�ned and they are quasi-inverses of each other. In particular Uω is a smooth open

substack of G-Cov. Moreover, over R3, the composition Cov3 ' C3
Λ−−→ G-Cov is a section of

the map G-Cov −→ Cov3 obtained by taking invariants by σ ∈ Z/2Z and the same result hold if
we replace G-Cov by S3-Cov.

We will prove this theorem after collecting some preliminary remarks.

Remark 4.4. By B.12, if χ ∈ G-Cov and trβχ = 0, so that βχ = βδ (with δ = δβχ), then, by
(2.4) and (2.15), we have

(4.1) ηδ = 2(−,−)χ

We now want to show the relationship between C3 and Cov3. The reader can refer to [Mir85,
BV12] for details and proofs.

Remark 4.5. If Φ = (F , δ) ∈ C3 and we set AΦ = OT ⊕ F , we can endow AΦ by a structure of
OT -algebras given by

Sym2 F ηδ+βδ−−−−→ AΦ

This association de�nes a map of stacks C3 −→ Cov3. This map is an isomorphism if 3 is inverted
in the base scheme. Indeed, overR3, if A ∈ Cov3, the trace map trA /OT : A −→ OT is surjective
and we can write A = OS ⊕ F , where F = ker trA . The multiplication of A induces a map
β : Sym2 F −→ F such that trβ = 0 and therefore a δ : Sym3 F −→ detF such that βδ = β.

Now let χ = (L,F ,m, α, β, 〈−,−〉) ∈ G-Cov. It's easy to see that

A σ
χ = {a⊕ 0⊕ x1 ⊕ x2 | a ∈ OT , x1 = x2 ∈ F}

where σ ∈ Z/2Z ⊆ G. The map

OT ⊕F A σ

a⊕ x a⊕ 0⊕ x⊕ x

is an isomorphism of OS-modules and the induced algebra structure on OT ⊕F is given by

β : Sym2 F −→ F and 2(−,−) : Sym2 F −→ OT
Moreover (trA σ )|O = 3id and (trA σ )|F = trβ. Over R3 this means F = ker trA σ if and only if

trβ = 0. In general we obtain a map of stacks {trβ = 0} = (G-Cov)red → C3 (see 3.5) and, by
4.4, (G-Cov)red → C3 → Cov3 consists in taking invariants by σ.

Remark 4.6. Theorem 1.5 tells us that, over R3, the isomorphism G-Cov ' S3-Cov preserves
the quotient by σ ∈ Z/2Z, that is we have a commutative diagram

G-Cov S3-Cov X A

Cov3 X/σ A σ

'

Proof of Theorem 4.3. We need to prove that Λ is well de�ned. Let Φ = (F , δ) ∈ C3. We have
that χ = Λ(Φ) ∈ Y and we have to prove that χ satis�es the conditions of 2.11. We can therefore
work locally and �x a basis y, z of F . By (B.3), the parameters associated to χ (see 2.12) are

a, b, c, d = −a, e, f = −c, ω = 1, A = −D = (ac+ be)/2, B = c2 − ae, C = −a2 − bc

It is easy to check that all the conditions in 2.11 are satis�ed. So Λ(Φ) ∈ G-Cov and, by
de�nition, Λ(Φ) ∈ Uω.
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Following notation from 3.1 we have Cartesian diagrams

SpecS SpecPω SpecP SpecR

C3 Uω G-Cov BGL2×BGm
Λ

By de�nition of C3 one have S = R[a, b, c, e, ω]ω and P → S is de�ned as above. In order to
conclude that Λ is an equivalence it is enough to notice that Pω → S is an isomorphism. This
holds because, if ω is invertible, then a = −d, c = −f , A = −D and B and C are functions of the
a, b, c, e. By a direct check, the only two non trivial relations missing are automatically satis�ed.

Now assume we are over R3. The map G-Cov −→ Cov3 ' C3 extends the map Uω −→ C3
de�ned in the statement. Therefore Cov3 ' C3 −→ Uω ⊆ G-Cov is a section of such map. The
claim about S3 follows from 4.6. �

Corollary 4.7. Set F = R2 with basis e1, e2 and consider δ : Sym3 F −→ detF given by
δ(e3

2) = −δ(e3
1) = 1 and δ(e1e

2
2) = δ(e2

1e2) = 0. Then

G ' AutC3(F , δ)

Over R3, the map BG −→ Cov3 obtained by taking invariants by σ ∈ Z/2Z, is an equivalence
onto the locus Et3 of étale degree 3 covers. Moreover

G ' AutCov3
(R3[t]/(t3 − 1))

Proof. By [Ton17a, Thm A], the trivial G-torsor G → SpecR is associated with the forgetful

functor Ω: LocGR −→ LocR. In particular, taking into account section 2.1, the sequence
χ = (L,F ,m, α, β, 〈−,−〉) ∈ G-Cov(R) associated with Ω (and the trivial G-torsor) is given by

L = A,F = V ;
α(1A ⊗ v1) = −v1

α(1A ⊗ v2) = v2
;
β(v2

1) = v2, β(v1v2) = 0, β(v2
2) = v1

〈v1, v2〉 = (1/2)1A, m(1A ⊗ 1A) = 1

In particular χ ∈ Uω and, by 4.3, the image of χ via the equivalence Φ: Uω → C3 is (F , δβ).
Moreover G ' AutG-Cov χ ' AutC3(F , δβ) and, by (B.1), δβ = δ.

Assume now that the base ring is R3, so that Φ: Uω → C3 ' Cov3 consists in taking invariants
by σ. By 4.5 the algebra Φ(χ) associated with χ or (F , δ) is S = R3 ⊕ F with multiplication
2(−,−)⊕β : Sym2 F → R3⊕F . A direct computation shows that v2

1 = v2 and v
3
1 = 1. It follows

that S = R3[t]/(t3−1) and, in particular, the last isomorphism. Moreover Φ|BG : BG→ Cov3 is
an equivalence onto the substack E of Cov3 of objects which are locally isomorphic to Φ(χ) = S.
Since SpecS → SpecR3 is an étale cover of degree 3, it follows that E = Et3. �

4.2. The locus where α : L ⊗ F −→ F is nowhere a multiple of the identity.

De�nition 4.8. We denote by Uα the full substack of χ ∈ G-Cov such that αχ : Lχ⊗Fχ −→ Fχ
is nowhere a multiple of the identity, i.e. it is not a multiple of the identity over all geometric
points of the base (see also B.4).

Theorem 4.9. Let R = R[m, a, b]. Then

(R,R2, α, β, 〈−,−〉) where α =

(
0 m
1 0

)
, β =

(
a −mb ma
b −a mb

)
, 〈−,−〉 = mb2 − a2

is an object of G-Cov(R). The induced map A3 −→ G-Cov is a smooth Zariski epimorphism
onto Uα. In particular Uα is a smooth open substack of G-Cov.

Before proving this Theorem we need two lemmas.
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Lemma 4.10. Let F be a locally free sheaf of rank 2, L be an invertible sheaf, both over a
scheme T and α : L ⊗ F −→ F be a map. Let also k be a �eld, Spec k −→ T be a map and
p ∈ T the induced point. If α ⊗ k is not a multiple of the identity, then there exists a Zariski
open neighborhood V of p in T and y ∈ F|V such that L|V = OV t and y, α(t ⊗ y) is a basis of
F|V .

Proof. By Nakayama's lemma we can assume T = Spec k. By contradiction assume that a basis
as in the statement does not exist. It is easy to deduce that any vector of F is an eigenvector
for α. By standard linear algebra we can conclude that α is a multiple of the identity. �

Lemma 4.11. Let χ = (L,F , α, β, 〈−,−〉) ∈ Y and y ∈ F be such that L = OT and y, z = α(y)
is a basis of F . Then χ ∈ G-Cov if and only if the associated parameters (see 2.12) of χ with
respect to the basis y, z are

a, b, c = −mb, d = −a, e = ma, f = mb, ω = mb2 − a2, A = D = 0, B = m,C = 1

In this case χ ∈ Uα.

Proof. First of all note that, if the associated parameters of χ are as above, then they satisfy
equations (2.15). Therefore χ ∈ G-Cov and, by de�nition, α is nowhere a multiple of the identity,
i.e. χ ∈ Uα. Consider now the converse implication and denote by a, b, c, d, e, f, ω,A,B,C,D,m
the parameters associated with χ ∈ G-Cov with respect to the basis y, z of F . In particular
equations (2.15) hold true. By de�nition of y, z we have A = 0, C = 1 and therefore

C(A+D) = 0 =⇒ D = 0, m = (A2 +D2)/2 +BC = B

b(A+D) + C(a+ d) = d(A+D) + C(c+ f) = 0 =⇒ d = −a, f = −c
(2aA+ bB + cC) = (2cA+ dB + eC) = 0 =⇒ c = −mb, e = ma

a2 + bc = −ωC =⇒ ω = mb2 − a2

�

Proof. (of theorem 4.9). By 4.10 and 4.11, Uα is an open substack of G-Cov, χ ∈ Uα(R) and the
induced map π : A3 −→ Uα is a Zariski epimorphism.

It remains to prove that π is smooth. The scheme A3 represents the functor (Sch/R)op →
(Sets) associating with a scheme T the setoid of tuples (χ, t, y) where χ = (L,F , α, β, 〈−,−〉) ∈
G-Cov(T ), t ∈ L is a generator and y ∈ F is an element such that y, α(t ⊗ y) is a basis for F .
In particular, given a map χ = (L,F , α, β, 〈−,−〉) : T → Uα the �ber product Z = T ×Uα A3

represents the functor (Sch/T )op → (Sets) of pairs (t, y) where t ∈ L is a generator and y, α(t⊗y)
is a basis of F .

The smoothness of Z → T is local on T , therefore we can assume χ = π(m, a, b) for m, a, b ∈
OT . If y = (u, v) ∈ F = O2

T then α(y) = (mv, u) and y, α(y) is a basis of F if and only if
u2 −mv2 is invertible. This observation allows us to conclude that

Z = Spec(OT [X,Y,W ]X(Y 2−mW 2)) ⊆ A3
T

is open, hence smooth. �

4.3. The locus where β : Sym2 F −→ F is nowhere zero. Given an object χ ∈ G-Cov or a
morphism β : Sym2 F → F (where F is a rank 2 locally free sheaf) we de�ne the map

dβ : F → detF , x 7−→ x ∧ β(x2)

Notice that this is not a map of quasi-coherent sheaves because it is not O-linear, it is just a
map of sheaves of sets. We remark that its formation commutes with arbitrary base changes of
the base.
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De�nition 4.12. We de�ne Uβ as the full substack of objects χ ∈ G-Cov such that dβχ : Fχ →
detFχ is nowhere zero, i.e. dβχ is not zero on all geometric points of the base.

Theorem 4.13. Let R = R[ω,A,C]. Then

(R,R2, α, β, 〈−,−〉) where α =

(
A ωC2

C −A

)
, β =

(
0 −ωC 2ωA
1 0 ωC

)
, 〈−,−〉 = ω

is an object of G-Cov(R). The associated map π : A3 −→ G-Cov is smooth and its image is Uβ,
which is therefore a smooth open substack of G-Cov.

Over R3, Uβ coincides with the full substack of χ ∈ G-Cov such that βχ is nowhere zero.

We prove the above result at the end of the section.

Lemma 4.14. Let T be an R-scheme, F a free sheaf of rank 2 and

β =

(
a c e
b d f

)
: Sym2 F → F

a morphism. Then the locus U where dβ : F → detF is nowhere zero is open and its complement
is de�ned by the ideal (b, e, 2d− a, f − 2c). In particular if T is an R3-scheme and trβ = 0 then
dβ is nowhere zero if and only if β is nowhere zero.

Moreover for any u ∈ U there exists an open neighborhood V of u inside U and y ∈ F(V )
such that y, β(y2) is a basis of F|V .

Proof. Set F = O2
T with basis e1, e2. Given y = ue1 + ve2 a direct computation shows that

dβ(y) = y ∧ β(y2) = (u3b+ u2v(2d− a) + uv2(f − 2c)− v3e)e1 ∧ e2

Choosing y = e1, e2, e1 + e2, e1 − e2 we see that

dβ = 0 ⇐⇒ b = e = 2d− a = f − 2c = 0

which proves the �rst claims. For the last one, by Nakayama there exist a neighborhood u ∈ V ,
y ∈ F and q ∈ OV not zero in u such that dβ(y) = q(e1 ∧ e2) ∈ detF|V . Inverting q in V we �nd
the desired neighborhood. �

Lemma 4.15. Let χ = (L,F , α, β, 〈−,−〉) ∈ Y and y ∈ F be such that L = OT and y, z = β(y2)
is a basis of F . Then χ ∈ G-Cov if and only if the associated parameters (see 2.12) of χ with
respect to the basis y, z are

a = 0, b = 1, c = −ωC, d = 0, e = 2ωA, f = ωC, ω,A,B = ωC2, C,D = −A

In this case χ ∈ Uβ.

Proof. First of all, it is easy to check that, if the associated parameters of χ are the ones listed
in the statement, then they satisfy equations (2.15). Therefore χ ∈ G-Cov and, since β(y2) 6= 0
after all base changes, χ ∈ Uβ .

Assume now that χ ∈ G-Cov. By de�nition of the basis y, z, we have a = 0 and b = 1. Using
relations (2.15), we also have

b(a+ d) = a(a+ d) + b(c+ f) = 0 =⇒ d = −a = 0, f = −c

b(A+D) + C(a+ d) = 0 =⇒ D = −A

a2 + bc = −ωC, ac+ be = 2ωA =⇒ c = −ωC, e = 2ωA

2aA+ bB + cC = 0 =⇒ B = ωC2

�
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Proof of Theorem 4.13. From 4.14 and 4.15 we see that (R,R2, α, β, 〈−,−〉) ∈ Uβ(R), π : A3 −→
Uβ is a Zariski epimorphism and Uβ is open. The last claim follows from 4.14 and the fact that
if χ ∈ G-Cov(k) for a �eld k then trβχ = 0 by 3.5.

It remains to prove that π is smooth. By 4.15 the scheme A3 represents the functor (Sch/R)op →
(Sets) associating with a scheme T the setoid of tuples (χ, t, y) where χ = (L,F , α, β, 〈−,−〉) ∈
G-Cov(T ), t ∈ L is a generator and y ∈ F is an element such that y, β(y2) is a basis for F .
In particular, given a map χ = (L,F , α, β, 〈−,−〉) : T → Uα the �ber product Z = T ×Uα A3

represents the functor (Sch/T )op → (Sets) of pairs (t, y) where t ∈ L is a generator and y, β(y2)
is a basis of F .

The smoothness of Z → T can be checked locally on T and therefore we can assume L = OT
and F = O2

T , so that Z ⊆ A3
T . If y = (u, v) ∈ F then β(y2) = (f(u, v), g(u, v)) for some

f, g ∈ OT [X,Y ] and y, β(y2) is a basis of F if and only if ug(u, v)− vf(u, v) is invertible in the
base. This implies that

Z = SpecOT [W,X, Y ]W (Xg−Y f) ⊆ A3
T

is open, hence smooth. �

4.4. The stack of torsors B(µ3 oZ/2Z). In this section we want to describe the stack BG of
G-torsors.

De�nition 4.16. Given χ = (F , δ) ∈ C3 (see 4.3) (resp. χ = (L,F , α, β, 〈−,−〉) ∈ G-Cov)
we de�ne the discriminant map ∆Φ : (detF)2 −→ OT as the map obtained from F ⊗ F →
Sym2 F ηδ−−→ OT (resp. F ⊗ F → Sym2 F (−,−)χ−−−−−→ OT ) as in B.7.

Remark 4.17. For χ = (L,F , α, β, 〈−,−〉) ∈ G-Cov the map ∆χ coincides with

(detF)2 〈−,−〉⊗2

−−−−−−→ L2 −mχ−−−→ OT
Indeed locally one has ∆χ = (y, y)(z, z)− (y, z)2 = −BCω2 −A2ω2 = −ω2m.

Moreover, if trβ = 0, then ∆(F,δβ) = 4∆χ thanks to 4.1.

Remark 4.18. Let Φ = (F , δ) ∈ C3 and AΦ = OT ⊕F be the algebra associated with Φ (see 4.5).
By B.8 the discriminant of A is ∆AΦ

= 33∆Φ and, over R3, the algebra AΦ is étale over T if
and only if ∆Φ is an isomorphism.

Theorem 4.19. An object χ = (L,F ,m, α, β, 〈−,−〉) ∈ G-Cov corresponds to a G-torsor if and
only if the maps

m : L2 −→ OT , 〈−,−〉 : detF −→ L
are isomorphisms, or, equivalently, ∆χ : (detF)2 −→ OT is an isomorphism. In this case the
maps

α : L ⊗ F → F and (−,−)⊕ 〈−,−〉 ⊕ β : F ⊗ F → O ⊕L⊕ F
are isomorphisms and trβ = trα = 0. Moreover BG ⊆ Uω,Uα,Uβ.

Finally the map Λ: C3 → G-Cov of Theorem 4.3 restricts to an equivalence between the full
substack of C3 of objects Φ such that ∆Φ is an isomorphism and BG.

Proof. Let Γ be the functor associated with χ. By [Ton17a, Thm A] χ corresponds to a G-torsor
if and only if Γ is strong monoidal, that is all maps ΓU ⊗ ΓW → ΓU⊗W are isomorphisms for

U,W ∈ LocGR. Equivalently: the maps

ΓA ⊗ ΓA → ΓA⊗A ' ΓR, ΓA ⊗ ΓV → ΓA⊗V ' ΓV , ΓV ⊗ ΓV → ΓV⊗V ' ΓR ⊕ ΓA ⊕ ΓV

which are exactly m,α and (−,−) ⊕ 〈−,−〉 ⊕ β, are isomorphisms. If this is the case then
〈−,−〉 : detF → L is surjective, hence an isomorphism. In particular BG ⊆ Uω,Uβ , trβ = 0,
and, thanks to 4.17, the last claim follows from the �rst ones.
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Conversely assume that m and 〈−,−〉 are isomorphisms. The map α is an isomorphism
because α2 = mid locally. Moreover χ ∈ Uω implies that trα = 0, as one can check locally. If by
contradiction χ /∈ Uα then, on some geometric point, we would have that α is a multiple of the
identity and therefore α = (trα/2)id = 0, which is not the case. So χ ∈ Uα.

It remains to prove that χ ∈ BG. Since this is a local statement, we can assume χ = π(m, a, b),
where π : A3 → Uα is the map de�ned in 4.9. We have to prove that (−,−)⊕〈−,−〉⊕β : F⊗F →
O⊕L⊕F is an isomorphism. IfM is its attached matrix we have to show that detM is invertible.
We have

M =


−ω 0 0 mω
0 −ω ω 0
a −mb −mb ma
b −a −a mb

 =⇒ N =


−ω 0 0 2mω
0 −ω 2ω 0
a −mb 0 0
b −a 0 0


The matrix N is obtained replacing the third and fourth columns of M by M3 − M2 and
M4 −mM1 respectively, where M j denotes the j-th column. Thus

detM = detN = −2mω · 2ω · (mb2 − a2) = −4mω3 is invertible

�

4.5. The main irreducible component Z(µ3oZ/2Z) . In this subsection we want to give a
more precise description of the irreducible component ZG of G-Cov and, because of 1.5, of
ZS3 ⊆ S3-Cov over R3 (see 1.3). We are going to use results and notation from section B.2. In
particular we use notation B.16.

De�ne the stack Z whose objects are tuples (M,F , δ, ζ, ω) whereM is an invertible sheaf, F
is a locally free sheaf of rank 2, ω is a section ofM and δ, ζ are maps

δ : Sym3 F −→ detF , ζ : (detF)2 ⊗M −→ Sym2 F
satisfying the following conditions:

1) the composition

(4.2) (detF)2 ⊗M⊗F ζ⊗id−−−→ Sym2 F ⊗ F −→ Sym3 F δ−−→ detF
is zero;

2) the composition

(4.3) Sym2 F ζ̌−−→M−1 ω∨−−→ O
coincides with ηδ (see B.16 and (B.2)).

We de�ne a functor

Z → Y, Ω = (M,F , δ, ζ, ω) 7−→ (LΩ,FΩ, αΩ, βΩ, 〈−,−〉Ω)

setting LΩ =M⊗detF , FΩ = F , αΩ : LΩ⊗F −→ F the trace 0 map obtained from ζ via B.14,
βΩ = βδ : Sym2 F −→ F (see (B.1)) and �nally 〈−,−〉Ω = ω⊗iddetF : detF −→M⊗detF = LΩ.

Remembering the notation introduced in B.9, we want to prove the following Theorem.

Theorem 4.20. We have

ZG − {0} = Uω ∪ Uα ∪ Uβ
(see 3.3) and it is the smooth locus of ZG → SpecR.

Moreover we have an equivalence of stacks.

Z ZG
Ω = (M,F , δ, ζ, ω) (LΩ,FΩ, αΩ, βΩ, 〈−,−〉Ω)
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Corollary 4.21. The scheme X = Proj(R[a, b, c, e, A,B,C, ω]/I)→ SpecR, where
I = (2aA+ bB + cC, 2cA− aB + eC, 2ωA− (ac+ be), ωB − (c2 − ae), ωC + a2 + bc)

is smooth and projective and its geometric �bers are non degenerated surfaces in P7. Moreover
(ZG − {0}) ' [X/GL2].

Proof. The global claims follows from 3.13 and 4.20. For the geometry of the �bers, we base
change to a geometric point of the base. Since f : X → (ZG −{0}) has relative dimension 2 and
BG is a 0-dimensional open substack of ZG−{0}, it follows that dimX = dim f−1(BG) = 2. �

We will prove Theorem 4.20 after the following lemma.

Lemma 4.22. Let χ = (L,F , α, β, 〈−,−〉) ∈ Y(T ) be such that trα = trβ = 0 and set M =
L ⊗ detF−1. Let also ζ : M⊗ (detF)2 −→ Sym2 F be the map associated with α via B.14 and

δ = δβ : Sym3 F −→ detF (see (B.1)). If L = OT , y, z is a basis of F and we use notation from
2.12, we have equivalences

the map (4.2) is zero ⇐⇒ β ◦ ζ = 0 ⇐⇒
{

2aA+ bB + cC = 0
2cA+ eC − aB = 0

the map (4.3) coincides with ηδ ⇐⇒

 a2 + bc = −ωC
ac+ be = 2ωA
c2 − ae = Bω

Proof. The conditions trα = trβ = 0 means that a+d = c+f = A+D = 0. We have expressions

ζ = By2 − 2Ayz − Cz2, ζ̌ = −2C(y2)∗ + 2A(yz)∗ + 2B(z2)∗

thanks to (B.5) and (B.6). In particular

β(ζ) = (aB − 2cA− eC)y + (2aA+ bB + cC)z

By de�nition of δβ , the composition 4.2 is F 3 x 7→ x ∧ β(ζ) ∈ detF . The �rst equivalence
follows from expressions

y ∧ β(ζ) = (2aA+ bB + cC)y ∧ z and z ∧ β(ζ) = −(aB − 2cA− eC)y ∧ z
The second one instead follows from the expression of ηδ given in B.4 and the fact that the map
4.3 is just ωζ̌. �

Proof of Theorem 4.20. From 4.22 we see that Z → G-Cov is well de�ned and is an equivalence
onto the locus {trα = trβ = 0}, which coincides with ZG thanks to 3.5.

For the �rst claim we use Theorems 3.5, 4.3, 4.9 and 4.13. They tell us that Uω∪Uα∪Uβ ⊆ ZG
is an open substack and it is smooth and geometrically integral over R. By 3.17 it remains to
show that, topologically, ZG − (Uω ∪ Uα ∪ Uβ) = {0}. If k is an algebraically closed �eld and
χ ∈ ZG(k) is represented by local parameters as usual then χ /∈ (Uω ∪ Uα ∪ Uβ) if and only if
ω = 0, dβ = 0 and α = λid. As trα = 0 it follows that α = 0. By 4.14 the condition dβ = 0
implies b = e = 0. By 2.15 we also have a2 = c2 = 0 which tells us that a = c = 0 and, since
trβ = 0, d = f = 0. In conclusion χ /∈ (Uω ∪ Uα ∪ Uβ) if and only if χ ∈ {0}. �

Proof of Theorem 3.16. The �rst equivalence is 3.13. Moreover G-Cov is smooth outside {0} by
4.20. The result then follows from 3.17. �

Remark 4.23. Given χ ∈ ZG and denoted by (M,F , δ, ζ, ω) the corresponding object via 4.20,
one can check locally that the composition

M2 ⊗ (detF)2 idM⊗ζ−−−−−→M⊗ Sym2 F idM⊗ζ̌−−−−−→M⊗M−1 ' OT
is −4mχ, where as usual mχ : L2

χ 'M2 ⊗ (detF)2 −→ OS .
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Appendix A. Bitorsors.

In this section we recall some properties of bitorsors. One can compare de�nitions and results
with [Gir71, Chapter III, Section 1.5]. Let us �x a site C and two sheaves of groups G,H : C op →
(Grps).

If F : C op −→ (Sets) is a functor and S ∈ C we denote by FS the composition (C /S)op −→
C op −→ (Sets) and we (improperly) call it the restriction to S. If F is a sheaf (of groups) then
FS is a sheaf (of groups). If F : (C /S)op −→ (Sets) is a functor an action of G on F is an action
of GS on F .

In this section

De�nition A.1. We denote by ShG(C ) (resp. ShGC ) the category (resp. �bered category) of

sheaves over C with a right G-action. In particular ShGC (S) = ShGS (C /S) for S ∈ C and the
pullbacks are the restrictions.

The left (resp. right) regular action of G on itself is the left (resp. right) action given by

G×G −→ G, (g, h) −→ gh

A left (resp. right) G-torsor over C is a sheaf P : C op −→ (Sets) with a left action G× P −→ P
(resp. right action P × G −→ P ) such that, for all T ∈ C , PT is locally isomorphic to GT
endowed with the left (resp. right) regular action. A left (resp. right) G-torsor over S ∈ C is a
left (resp. right) GS-torsor over C /S.

A (G,H)-biaction on a sheaf P : C op −→ (Sets) is a pair (G× P u−−→ P, P ×H v−−→ P ) where
u and v are, respectively, a left G-action and a right H-action on P , such that the following
diagram is commutative.

G× P ×H P ×H

G× P P

u×idH

idG×v v

u

A (G,H)-bitorsor over C (resp. S ∈ C ) is a sheaf P : C op −→ (Sets) (resp. P : (C /S)op −→
(Sets)) with a (G,H)-biaction for which P is both a left G-torsor and a right H-torsor. Denote
by B(G,H) the �bered category over C of (G,H)-bitorsors. Notice that a (G,H) torsor over C
corresponds to a section C −→ B(G,H).

Remark A.2. The �bered category B(G,H) is a stack over C . This is easy to prove directly,
using the fact that ShC , the �bered category of sheaves of sets over C , is a stack (see [FGI+05,
Part 1, Example 4.11]).

Remark A.3. Given a left G-action u : G × P −→ P and a right H-action v : P × H −→ P ,
the pair (u, v) is a (G,H)-biaction if and only if the homomorphism G −→ AutP induced by u

factors through AutH P , that is if G acts through H-equivariant isomorphisms.

Lemma A.4. Let P be a sheaf with a (G,H)-biaction. Then P is a (G,H)-bitorsor if and only

if P is a right H-torsor and G → AutH(P ) is an isomorphism (or P is a left G-torsor and

H → AutG(P ) is an isomorphism).

Proof. We prove only the �rst claim. In particular we can assume that P is an H-torsor. More-
over, as the claim is local, we can also assume P = H. We therefore have a map

φ : G→ AutH(H) ' H such that gh = φ(g)h

As 1 is a global section of P = H, P is a G-torsor (that is P is a (G,H)-bitorsor) if and only if
the orbit map G→ H, g 7→ g ·1 is an isomorphism. Since this last map is φ we get the claim. �



STACK OF S3-COVERS 27

We want to de�ne a functor

Λ: B(G,H)→ Hom(ShGC , Sh
H
C )

As usual, we de�ne this only over the global sections. If P is a (G,H)-torsor over C and

X ∈ ShG(C ), then X ×P has a right free action of G given by (x, p)g = (xg, g−1p). Its quotient

ΛP (X) = (X × P )/G has a right H-action induced by the one of P , so that ΛP (X) ∈ ShH(C ).
Notice that, since G acts freely on X × P , the quotient (X × P )/G can be de�ned avoiding
to shea�fy the naive quotient (and thus avoiding the corresponding set theoretic problems):
(X × P )/G : C → (Sets) maps an object S ∈ C to the set of G-torsors Q → S together with
a G-equivariant map Q → X × P , in other words the quotient stack [X × P/G] is actually
equivalent to a sheaf.

Lemma A.5. Let P be a (G,H)-torsor over S ∈ C with a section p0 ∈ P (S). Then:

1) the orbit maps GS → P, g 7→ gp0 and HS → P, h 7→ p0h are isomorphisms and the
induced map φ : GS → HS is an isomorphism of groups such that gp0 = p0φ(g): in other
words P is isomorphic to the (G,H)-torsor H with left G-action gh = φ(g)h;

2) the composition ShGSC/S

ΛP−−→ ShHSC/S → ShGSC/S, where the second map is induced by φ, is

isomorphic to the identity.

Proof. Since P is a left G-torsor and right H-torsor the orbit maps are isomorphisms. Thus the
map φ : GS → HS is well de�ned: φ(g) is the unique element such that gp0 = p0φ(g). This also
allows to prove that φ is an isomorphism of groups. For the second part, it is enough to notice
that the maps

X → ΛP (X), x 7→ (x, p0), ΛP (X)→ X, (x, gp0)→ xg

are well de�ned, inverses of each other and G-equivariant. �

Remark A.6. Any (G,H)-biaction on a sheaf P induces an (H,G)-biaction on P by the rule:
g ? p ? h = h−1pg−1. Moreover a (G,H)-torsor P is naturally also an (H,G)-torsor, which we
denote by P ?, and this operation de�nes an isomorphism of stacks B(G,H)→ B(H,G).

Lemma A.7. If P is a (G,H)-torsor and X ∈ ShG(C ) there is a canonical G-equivariant

isomorphism of sheaves ΛP?(ΛP (X)) → X. In particular the functor ΛP : ShGC → ShHC is an
equivalence of stacks.

Proof. There is a map ψ : P × P ? → G determined by the rule p = ψ(p, q)q for p, q ∈ P . A
simple computation shows that ψ(up, vq) = uψ(p, q)v−1 for u, v ∈ G and ψ(ph, qh) = ψ(p, q) for
h ∈ H. Using those expressions it is easy to show that the map

X × P × P ? → X, (x, p, q) 7−→ xψ(p, q)

factors through a G-equivariant map ΛP?(ΛP (X)) → X. Going locally where P has a section
and using A.5 it is easy to show that this map is an isomorphism. �

Proposition A.8. The functor Λ: B(G,H) → Hom(ShGC , Sh
H
C ) is an equivalence onto the full

substack of functors which are fully faithful and maps G to an H-torsor. Moreover ΛP is an
equivalence for P ∈ B(G,H) and restricts to an equivalence ΛP : BG → BH. The induced
functor Λ: B(G,H)→ Hom(BG,BH) is an equivalence onto the full substack of functors which
are fully faithful.

Proof. By A.5, we see that if P ∈ B(G,H) and X ∈ BG then ΛP (X) ∈ BH. Thus the functor
Λ: B(G,H) → Hom(BG,BH) is well de�ned and ΛP (G) ∈ BH. We prove both statement at

the same time. For this set either H = Hom(ShGC , Sh
H
C ) or H = Hom(BG,BH) and denote by

E the full substack considered in the statement.



STACK OF S3-COVERS 28

By A.7 the functor Λ: B(G,H)→ H has values in E. On the other hand if Ω ∈ E then Ω(G)
is an H-torsor and the map

G
'−−→ AutG(G)→ AutH(Ω(G))

is an isomorphism because Ω is fully faithful. Thus Ω(G) is a (G,H)-bitorsor thanks to A.4.
Evaluation inG therefore de�nes a functor Y : E → B(G,H). We �rst show that Y ◦Λ ' idB(G,H).
The following maps

P → ΛP (G), p 7→ (1, p), ΛP (G)→ P, (g, p) 7→ gp for P ∈ B(G,H)

are quasi-inverses of each other andH-equivariant. Moreover we can check that they also preserve
the G-action.

We now prove that Λ ◦ Y ' idE . Let Ω ∈ E. Using the isomorphism X ' HomG(G,X) we
obtain natural morphisms

X × Ω(G) ' HomG(G,X)× Ω(G)→ HomH(Ω(G),Ω(X))× Ω(G)→ Ω(X), (x, e) 7−→ Ω(ux)(e)

Here, for (x, e) ∈ X(S)×Ω(G)(S) the map ux : GS → XS is the orbit map ux(g) = xg. By going
through the de�nitions one can check that the above map is H-equivariant and G-invariant. Thus
it induces a natural morphism morphism ΛΩ(G)(X)→ Ω(X) that we claim is an isomorphism.

Since this is a local claim and Ω(G) is an H-torsor, we can assume that Ω(G) has a section.
Taking into account A.5, we can assume G = H and Ω(G) = H with left and right actions given
by multiplication. We now prove that Ω ' id, so that, in particular, the morphism ΛΩ(G) → Ω
will be an isomorphism. We have a natural isomorphism of sheaves of sets

δ : X ' HomG(G,X) ' HomH(Ω(G),Ω(X)) = HomH(H,Ω(X)) ' Ω(X), δ(x) = Ω(ux)(1)

We just have to show that it is G-equivariant. On the other hand uxg = ux ◦ mg, where
mg : G → G is the left multiplication by g and, by construction, Ω(mg)(1) = g · 1 = g, because
the left action of G on Ω(G) = H is just the left multiplication for G = H. In particular

δ(xg) = Ω(uxg)(1) = Ω(ux)(Ω(mg)(1)) = Ω(ux)(g) = Ω(ux)(1 · g) = Ω(ux)(1)g = δ(x)g

as required. �

Corollary A.9. We have BG ' BH if and only if there exists an H-torsor P over C with an
isomorphism G ' AutH P .

We now want to describe two examples of non trivial bitorsors.

Example A.10. Set P = Iso(G,H). The maps

AutG× P −→ P, P ×Aut(H) −→ P , both given by (φ, ψ) 7−→ φ ◦ ψ

induce a (AutG,AutH)-action on Iso(G,H) and, if G and H are locally isomorphic, then
Iso(G,H) is a (AutG,AutH)-bitorsor. In particular, in this case, we obtain an isomorphism

BAut(G) ' BAut(H)

The second bitorsor we want to describe is a re�nement of the previous one.

Proposition A.11. Set P = G× Iso(H,G). The maps

P × (H oAutH) −→ P, (GoAutG)× P −→ P , both given by (x, φ) · (y, ψ) = (xφ(y), φψ)

de�ne a ((Go AutG), (H o AutH))-action on P and, if G and H are locally isomorphic, then
P is a ((GoAutG), (H oAutH))-bitorsor. In particular, in this case, we have an isomorphism

B(GoAutG) ' B(H oAutH)
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and, if ΛP : Sh
GoAutG
C −→ Sh

HoAutH
C is the functor de�ned in A.8, we have a canonical iso-

morphism of sheaves of sets

(X/AutG) ' (ΛP (X)/AutH) for all X ∈ Sh
GoAutG
C

Proof. A direct computation shows that the maps in the statement yield compatible actions.
Moreover, if γ : G −→ H is an isomorphism, it is also straightforward to check that the maps
g 7−→ g · γ and h 7−→ γ ·h are equivariant isomorphisms GoAutG −→ P and H oAutH −→ P
respectively. Finally consider the map

π : X × P = X ×G× Iso(H,G) −→ X given by π(x, g, φ) = x(g, idG)

It is easy to check that π(z(u, ψ)) = π(z)(1G, ψ) and π(z(1H , δ)) = π(z) for all z ∈ X × P ,
(u, ψ) ∈ GoAutG and (1H , δ) ∈ H oAutH. In particular π yields a map (ΛP (X)/AutH) −→
(X/AutG). This is an isomorphism since it is so locally, i.e. when we have an isomorphism

H
φ−−→ G: in this case the inverse is given by x −→ (x, 1G, φ). �

Appendix B. Sheaves and traces

In this appendix we want to collect several constructions involving quasi-coherent sheaves,
especially locally free ones, that are used throughout the paper. In particular we will introduce
and discuss the trace map associated with particular morphisms of sheaves. We �x a base scheme
T . All sheaves will be de�ned over this scheme.

Remark B.1. If F is a locally free sheaf of rank 2 then the canonical map F ⊗ F −→ detF
induces an isomorphism

F ' F∨ ⊗ detF
If y, z is a basis of F then the above map is given by y −→ −z∗ ⊗ (y ∧ z), z −→ y∗ ⊗ (y ∧ z).

De�nition B.2. Let F be a locally free sheaf, Q be an OT -module and ζ : Q ⊗ F → F be a
morphism. We de�ne tr ζ : Q → OT , called the trace of ζ, as

tr ζ : Q → End(F) ' F∨ ⊗F ev−−→ OT
where the last map is the evaluation. We denote by Homtr=0(Q⊗F ,F) the subsheaf of morphisms
Hom(Q⊗F ,F) of maps whose trace is 0. In particular

Homtr=0(Q⊗F ,F) ' Hom(Q,Homtr=0(F ,F))

If A is a locally free sheaf of algebras on T then its trace map is trA = tr(A ⊗A → A ) : A →
OT .

Remark B.3. If a basis of F is �xed and rkF = n then End(F) ' Mn,n, the quasi-coherent
sheaf of n× n-matrices and the composition

Mn,n ' End(F) ' F∨ ⊗F ev−−→ OT
is the usual trace of matrices. In particular if ζ : Q⊗F → F is a map then (tr ζ)(q) = tr(ζ(q⊗−)).

De�nition B.4. Let F be a locally free sheaf, Q be an OT -module and ζ : Q ⊗ F → F be a
morphism. We say that ζ is locally a multiple of the identity if all the morphisms in the image
of Q → End(F) are fpqc locally a multiple of the identity. We denote by Homλid(Q⊗F ,F) the
subsheaf of Hom(Q⊗F ,F) of those morphisms.

Lemma B.5. Let F be a locally free sheaf and Q be an OT -module. Then OT ' Endλid(F),
that is a morphism F → F is locally a multiple of the identity if it is a multiple of the identity.
More generally, applying Hom(Q,−), we obtain

Hom(Q,OT ) ' Hom(Q,Endλid(F)) = Homλid(Q⊗F ,F), µ 7−→ µ⊗ id
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Proof. The map OT → Endλid(F) is injective. Moreover it is an epimorphism in the fpqc
topology, hence it is an isomorphism. The last claim follows from de�nition. �

Lemma B.6. Let F be a locally free sheaf and Q be an OT -module. Then there is an exact
sequence of OT -modules

0→ Homtr=0(Q⊗F ,F)→ Hom(Q⊗F ,F)
tr−−→ Hom(Q,OT )→ 0

If rkF ∈ O∗T then tr restricts to an isomorphism Homλid(Q ⊗ F ,F) → Hom(Q,OT ), whose
inverse is

Hom(Q,OT )→ Homλid(Q⊗F ,F), µ 7→ (µ/ rkF)⊗ idF

In particular in this case Hom(Q⊗F ,F) = Homtr=0(Q⊗F ,F)⊕Homλid(Q⊗F ,F).

Proof. The surjectivity of tr can be checked locally when F is free. The second claim instead
follows easily from B.5. �

Remark B.7. Let R be a ring, M,N be R-modules and m ∈ N . Given η : M ⊗N → R we de�ne

ΛmM ⊗ ΛmN → R, (x1 ∧ · · · ∧ xm)⊗ (y1 ∧ · · · ∧ ym) 7−→ det((η(xi ⊗ yj)))

Applying this construction to the evaluation M∨ ⊗M → R we obtain a map

Λm(M∨)→ (ΛmM)∨, (φ1 ∧ · · · ∧ φm) 7−→ (y1 ∧ · · · ∧ yn 7→ det(φi(yj)))

A direct check shows that if M is free with basis e1, . . . , en then (e∗i1 ∧ · · · ∧ e
∗
im

) is mapped to
(ei1 ∧ · · · ∧ eim)∗ for 1 ≤ i1 < · · · < im ≤ n. In particular the above map is an isomorphism for
locally free R-modules.

The map ΛmM ⊗ ΛmN → R can also be obtained as

M ⊗N → R =⇒ M → N∨ =⇒ ΛmM → Λm(N∨)→ (ΛmN)∨ =⇒ ΛmM ⊗ ΛmN → R

Remark B.8. If A is a locally free sheaf of algebras its discriminant ∆A : (detA )2 → OT is the
map induced by trA (− ·−) : A ⊗A → OT as in B.7. It de�nes an e�ective Cartier divisor on T
whose complement coincides with the étale locus of SpecA → T (see [Gro71, Proposition 4.10]).
Assume that A = OT ⊕E with (trA )|E = 0 and denote by π : A → OT the projection. The map

E ⊗ E → A
π−−→ OT also de�nes a map ∆: ((detA )2 ')(detE)2 → OT via B.7 and ∆A = nn∆,

because trA = trA ◦π = trA (1)π = nπ.

B.1. Trace zero maps of the form Sym2 F → F . In this subsection F will denote a locally
free sheaf of rank 2.

Notation B.9. Given β : Sym2 F −→ F we set

trβ = tr(F ⊗ F −→ Sym2 F β−−→ F) : F −→ OT
If y, z is a basis of F and β(y2) = ay+bz, β(yz) = cy+dz, β(z2) = ey+fz, then (trβ)(y) = a+d,
(trβ)(z) = c+ f .

Proposition B.10. [Mir85, BV12] If β : Sym2 F −→ F is a map such that trβ = 0 then there
exists a unique dashed map δ as in

Sym2 F ⊗ F F ⊗ F

Sym3 F detF

β⊗id

δ
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This association yields an isomorphism

Homtr=0(Sym2 F ,F) Hom(Sym3 F , detF)(
a c e
b −a −c

) (
−b a c e

)
(B.1)

where the last row describes how this map behaves if a basis y, z of F is chosen. Here the chosen
basis for Sym2 F and Sym3 F are y2, yz, z2 and y3, y2z, yz2, z3 respectively.

Notation B.11. In the hypothesis of B.10 we will denote the correspondence (B.1) by β 7−→ δβ
and δ 7−→ βδ. Given δ : Sym3 F → detF we also de�ne maps

ηδ : Sym2 F → OT , αδ : detF ⊗ F → F and mδ : (detF)2 → OT
as follows. De�ne ηδ as the map

(B.2) Sym2 F u−−→ Λ2 Sym2 F ⊗ Λ2F∨ v−−→ OS
where v is induced by Λ2βδ : Λ2 Sym2 F −→ Λ2F and u is induced by

Λ2F ⊗ Sym2 F Λ2 Sym2 F
(x1 ∧ x2)⊗ x3x4 −x1x3 ∧ x2x4 − x1x4 ∧ x2x3

If 2 ∈ O∗T , the map αδ

detF ⊗ F∨ ⊗F '−−→ F ⊗F ηδ/2−−−→ OS
where detF ⊗ F∨ ' F is the canonical isomorphism of B.1 and mδ is

(detF)2 ⊗ detF ' det(detF ⊗ F)
−detαδ−−−−−→ detF

Remark B.12. In the hypothesis of B.10, if y, z is a basis of F , we identify detF ' OT using the
generator y ∧ z ∈ detF and we write δ as

(B.3) δ(y3) = −b, δ(y2z) = a, δ(yz2) = c, δ(z3) = e

then we have expressions

(B.4) ηδ(y
2) = 2(a2 + bc), ηδ(yz) = ac+ be, ηδ(z

2) = 2(c2 − ae)
2αδ(y) = ηδ(yz)y − ηδ(y2)z, 2αδ(z) = ηδ(z

2)y − ηδ(yz)z

B.2. Trace zero maps of the form Q⊗ F → F . In this subsection F will denote a locally
free sheaf of rank 2 and Q an OT -module. Moreover we assume 2 ∈ O∗T .

Remark B.13. Given a map α : Q⊗F −→ F , we have a factorization

s⊗ p⊗ q α(s⊗ q)p− α(s⊗ p)q
Q⊗F ⊗F Sym2 F

Q⊗ detF

and this association de�nes a map

Hom(Q⊗F ,F) Hom(Q⊗ detF ,Sym2 F)(
u v
w z

)
(v z − u − w)

(B.5)

where the last row describes the behaviour if Q = OT and a basis y, z of F is given.
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If Q = OT we obtain a map End(F) → Hom(detF , Sym2 F) and the general map (B.5) is
obtained applying Hom(Q,−) to the previous map.

Lemma B.14. The map (B.5) restricts to an isomorphism

Homtr=0(Q⊗F ,F)→ Hom(Q⊗ detF , Sym2 F)

and its kernel is Homλid(Q⊗F ,F) ' Hom(Q,OT ). In particular

OT ⊕Hom(detF , Sym2 F) ' End(F)

Proof. All the claims follows from the case Q = OT , the local description of (B.5) and B.6. �

Remark B.15. If L is an invertible sheaf the map

Sym2(Hom(F ,L)) Hom(Sym2 F ,L2)

ξη (uv 7−→ ξ(u)η(v) + η(u)ξ(v))

is an isomorphism: if L = OT and a basis y, z of F is given, the above association maps
(y∗)2, y∗z∗, (z∗)2 to 2(y2)∗, (yz)∗, 2(z2)∗.

Using (B.1), the composition

Sym2 F ' Sym2(Hom(F , detF)) ' Hom(Sym2 F , (detF)2)

yields an isomorphism

Hom((detF)2, Sym2 F) Hom(Sym2 F ,OT )

(u v w) (2w − v 2u)
(B.6)

where the last row describes its behaviour if a basis y, z of F is given.

Notation B.16. If N is an invertible sheaf, applying Hom(N ,−) to (B.6) we obtain an isomor-
phism

Hom(N ⊗ (detF)2, Sym2 F)→ Hom(Sym2 F ,N−1)

This association will be denoted by ζ 7−→ ζ̌ and η̂ ←− [ η. Notice that the above map has the
same local description of (B.6).
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